Cargando…
Fast uncertainty quantification of tracer distribution in the brain interstitial fluid with multilevel and quasi Monte Carlo
Efficient uncertainty quantification algorithms are key to understand the propagation of uncertainty—from uncertain input parameters to uncertain output quantities—in high resolution mathematical models of brain physiology. Advanced Monte Carlo methods such as quasi Monte Carlo (QMC) and multilevel...
Autores principales: | Croci, Matteo, Vinje, Vegard, Rognes, Marie E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7900999/ https://www.ncbi.nlm.nih.gov/pubmed/33174347 http://dx.doi.org/10.1002/cnm.3412 |
Ejemplares similares
-
Uncertainty quantification of parenchymal tracer distribution using random diffusion and convective velocity fields
por: Croci, Matteo, et al.
Publicado: (2019) -
Markov chain Monte Carlo with Gaussian processes for fast parameter estimation and uncertainty quantification in a 1D fluid‐dynamics model of the pulmonary circulation
por: Paun, L. Mihaela, et al.
Publicado: (2020) -
Multilevel and quasi-Monte Carlo methods for uncertainty quantification in particle travel times through random heterogeneous porous media
por: Crevillén-García, D., et al.
Publicado: (2017) -
Uncertainty quantification of bioassay functions for the internal dosimetry of radioiodine
por: Kwon, Tae-Eun, et al.
Publicado: (2020) -
Monte Carlo and Quasi-Monte Carlo Sampling
por: Lemieux, Christiane
Publicado: (2009)