Cargando…
Markov chain Monte Carlo with Gaussian processes for fast parameter estimation and uncertainty quantification in a 1D fluid‐dynamics model of the pulmonary circulation
The past few decades have witnessed an explosive synergy between physics and the life sciences. In particular, physical modelling in medicine and physiology is a topical research area. The present work focuses on parameter inference and uncertainty quantification in a 1D fluid‐dynamics model for qua...
Autores principales: | Paun, L. Mihaela, Husmeier, Dirk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7901000/ https://www.ncbi.nlm.nih.gov/pubmed/33249755 http://dx.doi.org/10.1002/cnm.3421 |
Ejemplares similares
-
Fast uncertainty quantification of tracer distribution in the brain interstitial fluid with multilevel and quasi Monte Carlo
por: Croci, Matteo, et al.
Publicado: (2020) -
Assessing model mismatch and model selection in a Bayesian uncertainty quantification analysis of a fluid-dynamics model of pulmonary blood circulation
por: Paun, L. Mihaela, et al.
Publicado: (2020) -
Markov chain Monte Carlo in practice
por: Gilks, W R, et al.
Publicado: (1995) -
Markov chain Monte Carlo in practice /
Publicado: (1996) -
Handbook of Markov chain Monte Carlo
por: Brooks, Steve
Publicado: (2011)