Cargando…
Using GANs with adaptive training data to search for new molecules
The process of drug discovery involves a search over the space of all possible chemical compounds. Generative Adversarial Networks (GANs) provide a valuable tool towards exploring chemical space and optimizing known compounds for a desired functionality. Standard approaches to training GANs, however...
Autores principales: | Blanchard, Andrew E., Stanley, Christopher, Bhowmik, Debsindhu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7901067/ https://www.ncbi.nlm.nih.gov/pubmed/33622401 http://dx.doi.org/10.1186/s13321-021-00494-3 |
Ejemplares similares
-
Adaptive language model training for molecular design
por: Blanchard, Andrew E., et al.
Publicado: (2023) -
Deep learning workflow for the inverse design of molecules with specific optoelectronic properties
por: Yoo, Pilsun, et al.
Publicado: (2023) -
Deep clustering of protein folding simulations
por: Bhowmik, Debsindhu, et al.
Publicado: (2018) -
Imbalanced biomedical data classification using self-adaptive multilayer ELM combined with dynamic GAN
por: Zhang, Liyuan, et al.
Publicado: (2018) -
SinGAN-Seg: Synthetic training data generation for medical image segmentation
por: Thambawita, Vajira, et al.
Publicado: (2022)