Cargando…
CADD-Splice—improving genome-wide variant effect prediction using deep learning-derived splice scores
BACKGROUND: Splicing of genomic exons into mRNAs is a critical prerequisite for the accurate synthesis of human proteins. Genetic variants impacting splicing underlie a substantial proportion of genetic disease, but are challenging to identify beyond those occurring at donor and acceptor dinucleotid...
Autores principales: | Rentzsch, Philipp, Schubach, Max, Shendure, Jay, Kircher, Martin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7901104/ https://www.ncbi.nlm.nih.gov/pubmed/33618777 http://dx.doi.org/10.1186/s13073-021-00835-9 |
Ejemplares similares
-
CADD: predicting the deleteriousness of variants throughout the human genome
por: Rentzsch, Philipp, et al.
Publicado: (2019) -
Integrating Expert Knowledge with Deep Learning Improves QSAR Models for CADD Modeling
por: Liu, Yunchao (Lance), et al.
Publicado: (2023) -
Deep Splicing Code: Classifying Alternative Splicing Events Using Deep Learning
por: Louadi, Zakaria, et al.
Publicado: (2019) -
COVID-19: CADD to the rescue
por: Onawole, Abdulmujeeb T., et al.
Publicado: (2020) -
EnsembleSplice: ensemble deep learning model for splice site prediction
por: Akpokiro, Victor, et al.
Publicado: (2022)