Cargando…
Screening of drug databank against WT and mutant main protease of SARS-CoV-2: Towards finding potential compound for repurposing against COVID-19
Although several pharmacological agents are under investigation to be repurposed as therapeutic against COVID-19, not much success has been achieved yet. So, the search for an effective and active option for the treatment of COVID-19 is still a big challenge. The Spike protein (S), RNA-dependent RNA...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7901282/ https://www.ncbi.nlm.nih.gov/pubmed/33649700 http://dx.doi.org/10.1016/j.sjbs.2021.02.059 |
_version_ | 1783654365085564928 |
---|---|
author | Sharma, Tanuj Abohashrh, Mohammed Baig, Mohammad Hassan Dong, Jae-June Alam, Mohammad Mahtab Ahmad, Irfan Irfan, Safia |
author_facet | Sharma, Tanuj Abohashrh, Mohammed Baig, Mohammad Hassan Dong, Jae-June Alam, Mohammad Mahtab Ahmad, Irfan Irfan, Safia |
author_sort | Sharma, Tanuj |
collection | PubMed |
description | Although several pharmacological agents are under investigation to be repurposed as therapeutic against COVID-19, not much success has been achieved yet. So, the search for an effective and active option for the treatment of COVID-19 is still a big challenge. The Spike protein (S), RNA-dependent RNA polymerase (RdRp), and Main protease (Mpro) are considered to be the primary therapeutic drug target for COVID-19. In this study we have screened the drugbank compound library against the Main Protease. But our search was not limited to just Mpro. Like other viruses, SARS-CoV-2, have also acquired unique mutations. These mutations within the active site of these target proteins may be an important factor hindering effective drug candidate development. In the present study we identified important active site mutations within the SARS-CoV-2 Mpro (Y54C, N142S, T190I and A191V). Further the drugbank database was computationally screened against Mpro and the selected mutants. Finally, we came up with the common molecules effective against the wild type (WT) and all the selected Mpro. The study found Imiglitazar, was found to be the most active compound against the wild type of Mpro. While PF-03715455 (Y54C), Salvianolic acid A (N142S and T190I), and Montelukast (A191V) were found to be most active against the other selected mutants. It was also found that some other compounds such as Acteoside, 4-Amino-N- {4-[2-(2,6-Dimethyl-Phenoxy)-Acetylamino]-3-Hydroxy-1-Isobutyl-5-Phenyl-Pentyl}-Benzamide, PF-00610355, 4-Amino-N-4-[2-(2,6-Dimethyl-Phenoxy)-Acetylamino]-3-Hydroxy-1-Isobutyl-5-Phenyl-Pentyl}-Benzamide and Atorvastatin were showing high efficacy against the WT as well as other selected mutants. We believe that these molecules will provide a better and effective option for the treatment of COVID-19 clinical manifestations. |
format | Online Article Text |
id | pubmed-7901282 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-79012822021-02-24 Screening of drug databank against WT and mutant main protease of SARS-CoV-2: Towards finding potential compound for repurposing against COVID-19 Sharma, Tanuj Abohashrh, Mohammed Baig, Mohammad Hassan Dong, Jae-June Alam, Mohammad Mahtab Ahmad, Irfan Irfan, Safia Saudi J Biol Sci Original Article Although several pharmacological agents are under investigation to be repurposed as therapeutic against COVID-19, not much success has been achieved yet. So, the search for an effective and active option for the treatment of COVID-19 is still a big challenge. The Spike protein (S), RNA-dependent RNA polymerase (RdRp), and Main protease (Mpro) are considered to be the primary therapeutic drug target for COVID-19. In this study we have screened the drugbank compound library against the Main Protease. But our search was not limited to just Mpro. Like other viruses, SARS-CoV-2, have also acquired unique mutations. These mutations within the active site of these target proteins may be an important factor hindering effective drug candidate development. In the present study we identified important active site mutations within the SARS-CoV-2 Mpro (Y54C, N142S, T190I and A191V). Further the drugbank database was computationally screened against Mpro and the selected mutants. Finally, we came up with the common molecules effective against the wild type (WT) and all the selected Mpro. The study found Imiglitazar, was found to be the most active compound against the wild type of Mpro. While PF-03715455 (Y54C), Salvianolic acid A (N142S and T190I), and Montelukast (A191V) were found to be most active against the other selected mutants. It was also found that some other compounds such as Acteoside, 4-Amino-N- {4-[2-(2,6-Dimethyl-Phenoxy)-Acetylamino]-3-Hydroxy-1-Isobutyl-5-Phenyl-Pentyl}-Benzamide, PF-00610355, 4-Amino-N-4-[2-(2,6-Dimethyl-Phenoxy)-Acetylamino]-3-Hydroxy-1-Isobutyl-5-Phenyl-Pentyl}-Benzamide and Atorvastatin were showing high efficacy against the WT as well as other selected mutants. We believe that these molecules will provide a better and effective option for the treatment of COVID-19 clinical manifestations. Elsevier 2021-05 2021-02-23 /pmc/articles/PMC7901282/ /pubmed/33649700 http://dx.doi.org/10.1016/j.sjbs.2021.02.059 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Article Sharma, Tanuj Abohashrh, Mohammed Baig, Mohammad Hassan Dong, Jae-June Alam, Mohammad Mahtab Ahmad, Irfan Irfan, Safia Screening of drug databank against WT and mutant main protease of SARS-CoV-2: Towards finding potential compound for repurposing against COVID-19 |
title | Screening of drug databank against WT and mutant main protease of SARS-CoV-2: Towards finding potential compound for repurposing against COVID-19 |
title_full | Screening of drug databank against WT and mutant main protease of SARS-CoV-2: Towards finding potential compound for repurposing against COVID-19 |
title_fullStr | Screening of drug databank against WT and mutant main protease of SARS-CoV-2: Towards finding potential compound for repurposing against COVID-19 |
title_full_unstemmed | Screening of drug databank against WT and mutant main protease of SARS-CoV-2: Towards finding potential compound for repurposing against COVID-19 |
title_short | Screening of drug databank against WT and mutant main protease of SARS-CoV-2: Towards finding potential compound for repurposing against COVID-19 |
title_sort | screening of drug databank against wt and mutant main protease of sars-cov-2: towards finding potential compound for repurposing against covid-19 |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7901282/ https://www.ncbi.nlm.nih.gov/pubmed/33649700 http://dx.doi.org/10.1016/j.sjbs.2021.02.059 |
work_keys_str_mv | AT sharmatanuj screeningofdrugdatabankagainstwtandmutantmainproteaseofsarscov2towardsfindingpotentialcompoundforrepurposingagainstcovid19 AT abohashrhmohammed screeningofdrugdatabankagainstwtandmutantmainproteaseofsarscov2towardsfindingpotentialcompoundforrepurposingagainstcovid19 AT baigmohammadhassan screeningofdrugdatabankagainstwtandmutantmainproteaseofsarscov2towardsfindingpotentialcompoundforrepurposingagainstcovid19 AT dongjaejune screeningofdrugdatabankagainstwtandmutantmainproteaseofsarscov2towardsfindingpotentialcompoundforrepurposingagainstcovid19 AT alammohammadmahtab screeningofdrugdatabankagainstwtandmutantmainproteaseofsarscov2towardsfindingpotentialcompoundforrepurposingagainstcovid19 AT ahmadirfan screeningofdrugdatabankagainstwtandmutantmainproteaseofsarscov2towardsfindingpotentialcompoundforrepurposingagainstcovid19 AT irfansafia screeningofdrugdatabankagainstwtandmutantmainproteaseofsarscov2towardsfindingpotentialcompoundforrepurposingagainstcovid19 |