Cargando…
Lexicon Development for COVID-19-related Concepts Using Open-source Word Embedding Sources: An Intrinsic and Extrinsic Evaluation
BACKGROUND: Scientists are developing new computational methods and prediction models to better clinically understand COVID-19 prevalence, treatment efficacy, and patient outcomes. These efforts could be improved by leveraging documented COVID-19–related symptoms, findings, and disorders from clinic...
Autores principales: | Parikh, Soham, Davoudi, Anahita, Yu, Shun, Giraldo, Carolina, Schriver, Emily, Mowery, Danielle |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7901592/ https://www.ncbi.nlm.nih.gov/pubmed/33544689 http://dx.doi.org/10.2196/21679 |
Ejemplares similares
-
Intrinsic and extrinsic drivers of source–sink dynamics
por: Heinrichs, Julie A., et al.
Publicado: (2016) -
Augmenting Semantic Lexicons Using Word Embeddings and Transfer Learning
por: Alshaabi, Thayer, et al.
Publicado: (2022) -
Biological Sources of Intrinsic and Extrinsic Noise in cI Expression of Lysogenic Phage Lambda
por: Lei, Xue, et al.
Publicado: (2015) -
Annotation and extraction of age and temporally-related events from clinical histories
por: Hong, Judy, et al.
Publicado: (2020) -
Multi-information Source HIN for Medical Concept Embedding
por: Cao, Yuwei, et al.
Publicado: (2020)