Cargando…
Using Tweets to Understand How COVID-19–Related Health Beliefs Are Affected in the Age of Social Media: Twitter Data Analysis Study
BACKGROUND: The emergence of SARS-CoV-2 (ie, COVID-19) has given rise to a global pandemic affecting 215 countries and over 40 million people as of October 2020. Meanwhile, we are also experiencing an infodemic induced by the overabundance of information, some accurate and some inaccurate, spreading...
Autores principales: | Wang, Hanyin, Li, Yikuan, Hutch, Meghan, Naidech, Andrew, Luo, Yuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7901597/ https://www.ncbi.nlm.nih.gov/pubmed/33529155 http://dx.doi.org/10.2196/26302 |
Ejemplares similares
-
Comparison between machine learning methods for mortality prediction for sepsis patients with different social determinants
por: Wang, Hanyin, et al.
Publicado: (2022) -
Blood pressure medication and acute kidney injury after intracerebral haemorrhage: an analysis of the ATACH-II trial
por: Naidech, Andrew M, et al.
Publicado: (2023) -
Using the president’s tweets to understand political diversion in the age of social media
por: Lewandowsky, Stephan, et al.
Publicado: (2020) -
Multimodal machine learning in precision health: A scoping review
por: Kline, Adrienne, et al.
Publicado: (2022) -
To Tweet or Not to Tweet—a Review of the Viral Power of Twitter for Infectious Diseases
por: Kullar, Ravina, et al.
Publicado: (2020)