Cargando…

A mesoscopic simulator to uncover heterogeneity and evolutionary dynamics in tumors

Increasingly complex in silico modeling approaches offer a way to simultaneously access cancerous processes at different spatio-temporal scales. High-level models, such as those based on partial differential equations, are computationally affordable and allow large tumor sizes and long temporal wind...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiménez-Sánchez, Juan, Martínez-Rubio, Álvaro, Popov, Anton, Pérez-Beteta, Julián, Azimzade, Youness, Molina-García, David, Belmonte-Beitia, Juan, Calvo, Gabriel F., Pérez-García, Víctor M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7901744/
https://www.ncbi.nlm.nih.gov/pubmed/33566821
http://dx.doi.org/10.1371/journal.pcbi.1008266
_version_ 1783654420692598784
author Jiménez-Sánchez, Juan
Martínez-Rubio, Álvaro
Popov, Anton
Pérez-Beteta, Julián
Azimzade, Youness
Molina-García, David
Belmonte-Beitia, Juan
Calvo, Gabriel F.
Pérez-García, Víctor M.
author_facet Jiménez-Sánchez, Juan
Martínez-Rubio, Álvaro
Popov, Anton
Pérez-Beteta, Julián
Azimzade, Youness
Molina-García, David
Belmonte-Beitia, Juan
Calvo, Gabriel F.
Pérez-García, Víctor M.
author_sort Jiménez-Sánchez, Juan
collection PubMed
description Increasingly complex in silico modeling approaches offer a way to simultaneously access cancerous processes at different spatio-temporal scales. High-level models, such as those based on partial differential equations, are computationally affordable and allow large tumor sizes and long temporal windows to be studied, but miss the discrete nature of many key underlying cellular processes. Individual-based approaches provide a much more detailed description of tumors, but have difficulties when trying to handle full-sized real cancers. Thus, there exists a trade-off between the integration of macroscopic and microscopic information, now widely available, and the ability to attain clinical tumor sizes. In this paper we put forward a stochastic mesoscopic simulation framework that incorporates key cellular processes during tumor progression while keeping computational costs to a minimum. Our framework captures a physical scale that allows both the incorporation of microscopic information, tracking the spatio-temporal emergence of tumor heterogeneity and the underlying evolutionary dynamics, and the reconstruction of clinically sized tumors from high-resolution medical imaging data, with the additional benefit of low computational cost. We illustrate the functionality of our modeling approach for the case of glioblastoma, a paradigm of tumor heterogeneity that remains extremely challenging in the clinical setting.
format Online
Article
Text
id pubmed-7901744
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-79017442021-03-02 A mesoscopic simulator to uncover heterogeneity and evolutionary dynamics in tumors Jiménez-Sánchez, Juan Martínez-Rubio, Álvaro Popov, Anton Pérez-Beteta, Julián Azimzade, Youness Molina-García, David Belmonte-Beitia, Juan Calvo, Gabriel F. Pérez-García, Víctor M. PLoS Comput Biol Research Article Increasingly complex in silico modeling approaches offer a way to simultaneously access cancerous processes at different spatio-temporal scales. High-level models, such as those based on partial differential equations, are computationally affordable and allow large tumor sizes and long temporal windows to be studied, but miss the discrete nature of many key underlying cellular processes. Individual-based approaches provide a much more detailed description of tumors, but have difficulties when trying to handle full-sized real cancers. Thus, there exists a trade-off between the integration of macroscopic and microscopic information, now widely available, and the ability to attain clinical tumor sizes. In this paper we put forward a stochastic mesoscopic simulation framework that incorporates key cellular processes during tumor progression while keeping computational costs to a minimum. Our framework captures a physical scale that allows both the incorporation of microscopic information, tracking the spatio-temporal emergence of tumor heterogeneity and the underlying evolutionary dynamics, and the reconstruction of clinically sized tumors from high-resolution medical imaging data, with the additional benefit of low computational cost. We illustrate the functionality of our modeling approach for the case of glioblastoma, a paradigm of tumor heterogeneity that remains extremely challenging in the clinical setting. Public Library of Science 2021-02-10 /pmc/articles/PMC7901744/ /pubmed/33566821 http://dx.doi.org/10.1371/journal.pcbi.1008266 Text en © 2021 Jiménez-Sánchez et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Jiménez-Sánchez, Juan
Martínez-Rubio, Álvaro
Popov, Anton
Pérez-Beteta, Julián
Azimzade, Youness
Molina-García, David
Belmonte-Beitia, Juan
Calvo, Gabriel F.
Pérez-García, Víctor M.
A mesoscopic simulator to uncover heterogeneity and evolutionary dynamics in tumors
title A mesoscopic simulator to uncover heterogeneity and evolutionary dynamics in tumors
title_full A mesoscopic simulator to uncover heterogeneity and evolutionary dynamics in tumors
title_fullStr A mesoscopic simulator to uncover heterogeneity and evolutionary dynamics in tumors
title_full_unstemmed A mesoscopic simulator to uncover heterogeneity and evolutionary dynamics in tumors
title_short A mesoscopic simulator to uncover heterogeneity and evolutionary dynamics in tumors
title_sort mesoscopic simulator to uncover heterogeneity and evolutionary dynamics in tumors
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7901744/
https://www.ncbi.nlm.nih.gov/pubmed/33566821
http://dx.doi.org/10.1371/journal.pcbi.1008266
work_keys_str_mv AT jimenezsanchezjuan amesoscopicsimulatortouncoverheterogeneityandevolutionarydynamicsintumors
AT martinezrubioalvaro amesoscopicsimulatortouncoverheterogeneityandevolutionarydynamicsintumors
AT popovanton amesoscopicsimulatortouncoverheterogeneityandevolutionarydynamicsintumors
AT perezbetetajulian amesoscopicsimulatortouncoverheterogeneityandevolutionarydynamicsintumors
AT azimzadeyouness amesoscopicsimulatortouncoverheterogeneityandevolutionarydynamicsintumors
AT molinagarciadavid amesoscopicsimulatortouncoverheterogeneityandevolutionarydynamicsintumors
AT belmontebeitiajuan amesoscopicsimulatortouncoverheterogeneityandevolutionarydynamicsintumors
AT calvogabrielf amesoscopicsimulatortouncoverheterogeneityandevolutionarydynamicsintumors
AT perezgarciavictorm amesoscopicsimulatortouncoverheterogeneityandevolutionarydynamicsintumors
AT jimenezsanchezjuan mesoscopicsimulatortouncoverheterogeneityandevolutionarydynamicsintumors
AT martinezrubioalvaro mesoscopicsimulatortouncoverheterogeneityandevolutionarydynamicsintumors
AT popovanton mesoscopicsimulatortouncoverheterogeneityandevolutionarydynamicsintumors
AT perezbetetajulian mesoscopicsimulatortouncoverheterogeneityandevolutionarydynamicsintumors
AT azimzadeyouness mesoscopicsimulatortouncoverheterogeneityandevolutionarydynamicsintumors
AT molinagarciadavid mesoscopicsimulatortouncoverheterogeneityandevolutionarydynamicsintumors
AT belmontebeitiajuan mesoscopicsimulatortouncoverheterogeneityandevolutionarydynamicsintumors
AT calvogabrielf mesoscopicsimulatortouncoverheterogeneityandevolutionarydynamicsintumors
AT perezgarciavictorm mesoscopicsimulatortouncoverheterogeneityandevolutionarydynamicsintumors