Cargando…
A mesoscopic simulator to uncover heterogeneity and evolutionary dynamics in tumors
Increasingly complex in silico modeling approaches offer a way to simultaneously access cancerous processes at different spatio-temporal scales. High-level models, such as those based on partial differential equations, are computationally affordable and allow large tumor sizes and long temporal wind...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7901744/ https://www.ncbi.nlm.nih.gov/pubmed/33566821 http://dx.doi.org/10.1371/journal.pcbi.1008266 |
_version_ | 1783654420692598784 |
---|---|
author | Jiménez-Sánchez, Juan Martínez-Rubio, Álvaro Popov, Anton Pérez-Beteta, Julián Azimzade, Youness Molina-García, David Belmonte-Beitia, Juan Calvo, Gabriel F. Pérez-García, Víctor M. |
author_facet | Jiménez-Sánchez, Juan Martínez-Rubio, Álvaro Popov, Anton Pérez-Beteta, Julián Azimzade, Youness Molina-García, David Belmonte-Beitia, Juan Calvo, Gabriel F. Pérez-García, Víctor M. |
author_sort | Jiménez-Sánchez, Juan |
collection | PubMed |
description | Increasingly complex in silico modeling approaches offer a way to simultaneously access cancerous processes at different spatio-temporal scales. High-level models, such as those based on partial differential equations, are computationally affordable and allow large tumor sizes and long temporal windows to be studied, but miss the discrete nature of many key underlying cellular processes. Individual-based approaches provide a much more detailed description of tumors, but have difficulties when trying to handle full-sized real cancers. Thus, there exists a trade-off between the integration of macroscopic and microscopic information, now widely available, and the ability to attain clinical tumor sizes. In this paper we put forward a stochastic mesoscopic simulation framework that incorporates key cellular processes during tumor progression while keeping computational costs to a minimum. Our framework captures a physical scale that allows both the incorporation of microscopic information, tracking the spatio-temporal emergence of tumor heterogeneity and the underlying evolutionary dynamics, and the reconstruction of clinically sized tumors from high-resolution medical imaging data, with the additional benefit of low computational cost. We illustrate the functionality of our modeling approach for the case of glioblastoma, a paradigm of tumor heterogeneity that remains extremely challenging in the clinical setting. |
format | Online Article Text |
id | pubmed-7901744 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-79017442021-03-02 A mesoscopic simulator to uncover heterogeneity and evolutionary dynamics in tumors Jiménez-Sánchez, Juan Martínez-Rubio, Álvaro Popov, Anton Pérez-Beteta, Julián Azimzade, Youness Molina-García, David Belmonte-Beitia, Juan Calvo, Gabriel F. Pérez-García, Víctor M. PLoS Comput Biol Research Article Increasingly complex in silico modeling approaches offer a way to simultaneously access cancerous processes at different spatio-temporal scales. High-level models, such as those based on partial differential equations, are computationally affordable and allow large tumor sizes and long temporal windows to be studied, but miss the discrete nature of many key underlying cellular processes. Individual-based approaches provide a much more detailed description of tumors, but have difficulties when trying to handle full-sized real cancers. Thus, there exists a trade-off between the integration of macroscopic and microscopic information, now widely available, and the ability to attain clinical tumor sizes. In this paper we put forward a stochastic mesoscopic simulation framework that incorporates key cellular processes during tumor progression while keeping computational costs to a minimum. Our framework captures a physical scale that allows both the incorporation of microscopic information, tracking the spatio-temporal emergence of tumor heterogeneity and the underlying evolutionary dynamics, and the reconstruction of clinically sized tumors from high-resolution medical imaging data, with the additional benefit of low computational cost. We illustrate the functionality of our modeling approach for the case of glioblastoma, a paradigm of tumor heterogeneity that remains extremely challenging in the clinical setting. Public Library of Science 2021-02-10 /pmc/articles/PMC7901744/ /pubmed/33566821 http://dx.doi.org/10.1371/journal.pcbi.1008266 Text en © 2021 Jiménez-Sánchez et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Jiménez-Sánchez, Juan Martínez-Rubio, Álvaro Popov, Anton Pérez-Beteta, Julián Azimzade, Youness Molina-García, David Belmonte-Beitia, Juan Calvo, Gabriel F. Pérez-García, Víctor M. A mesoscopic simulator to uncover heterogeneity and evolutionary dynamics in tumors |
title | A mesoscopic simulator to uncover heterogeneity and evolutionary dynamics in tumors |
title_full | A mesoscopic simulator to uncover heterogeneity and evolutionary dynamics in tumors |
title_fullStr | A mesoscopic simulator to uncover heterogeneity and evolutionary dynamics in tumors |
title_full_unstemmed | A mesoscopic simulator to uncover heterogeneity and evolutionary dynamics in tumors |
title_short | A mesoscopic simulator to uncover heterogeneity and evolutionary dynamics in tumors |
title_sort | mesoscopic simulator to uncover heterogeneity and evolutionary dynamics in tumors |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7901744/ https://www.ncbi.nlm.nih.gov/pubmed/33566821 http://dx.doi.org/10.1371/journal.pcbi.1008266 |
work_keys_str_mv | AT jimenezsanchezjuan amesoscopicsimulatortouncoverheterogeneityandevolutionarydynamicsintumors AT martinezrubioalvaro amesoscopicsimulatortouncoverheterogeneityandevolutionarydynamicsintumors AT popovanton amesoscopicsimulatortouncoverheterogeneityandevolutionarydynamicsintumors AT perezbetetajulian amesoscopicsimulatortouncoverheterogeneityandevolutionarydynamicsintumors AT azimzadeyouness amesoscopicsimulatortouncoverheterogeneityandevolutionarydynamicsintumors AT molinagarciadavid amesoscopicsimulatortouncoverheterogeneityandevolutionarydynamicsintumors AT belmontebeitiajuan amesoscopicsimulatortouncoverheterogeneityandevolutionarydynamicsintumors AT calvogabrielf amesoscopicsimulatortouncoverheterogeneityandevolutionarydynamicsintumors AT perezgarciavictorm amesoscopicsimulatortouncoverheterogeneityandevolutionarydynamicsintumors AT jimenezsanchezjuan mesoscopicsimulatortouncoverheterogeneityandevolutionarydynamicsintumors AT martinezrubioalvaro mesoscopicsimulatortouncoverheterogeneityandevolutionarydynamicsintumors AT popovanton mesoscopicsimulatortouncoverheterogeneityandevolutionarydynamicsintumors AT perezbetetajulian mesoscopicsimulatortouncoverheterogeneityandevolutionarydynamicsintumors AT azimzadeyouness mesoscopicsimulatortouncoverheterogeneityandevolutionarydynamicsintumors AT molinagarciadavid mesoscopicsimulatortouncoverheterogeneityandevolutionarydynamicsintumors AT belmontebeitiajuan mesoscopicsimulatortouncoverheterogeneityandevolutionarydynamicsintumors AT calvogabrielf mesoscopicsimulatortouncoverheterogeneityandevolutionarydynamicsintumors AT perezgarciavictorm mesoscopicsimulatortouncoverheterogeneityandevolutionarydynamicsintumors |