Cargando…
Non-linear Memristive Synaptic Dynamics for Efficient Unsupervised Learning in Spiking Neural Networks
Spiking neural networks (SNNs) are a computational tool in which the information is coded into spikes, as in some parts of the brain, differently from conventional neural networks (NNs) that compute over real-numbers. Therefore, SNNs can implement intelligent information extraction in real-time at t...
Autores principales: | Brivio, Stefano, Ly, Denys R. B., Vianello, Elisa, Spiga, Sabina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7901913/ https://www.ncbi.nlm.nih.gov/pubmed/33633531 http://dx.doi.org/10.3389/fnins.2021.580909 |
Ejemplares similares
-
Analog Memristive Synapse in Spiking Networks Implementing Unsupervised Learning
por: Covi, Erika, et al.
Publicado: (2016) -
Plasticity in memristive devices for spiking neural networks
por: Saïghi, Sylvain, et al.
Publicado: (2015) -
Spiking Neural Networks Based on OxRAM Synapses for Real-Time Unsupervised Spike Sorting
por: Werner, Thilo, et al.
Publicado: (2016) -
Corrigendum: Spiking Neural Networks Based on OxRAM Synapses for Real-Time Unsupervised Spike Sorting
por: Werner, Thilo, et al.
Publicado: (2017) -
Unsupervised discrimination of patterns in spiking neural networks with excitatory and inhibitory synaptic plasticity
por: Srinivasa, Narayan, et al.
Publicado: (2014)