Cargando…
Differences in Calcium Clearance at Inner Hair Cell Active Zones May Underlie the Difference in Susceptibility to Noise-Induced Cochlea Synaptopathy of C57BL/6J and CBA/CaJ Mice
Noise exposure of a short period at a moderate level can produce permanent cochlear synaptopathy without seeing lasting changes in audiometric threshold. However, due to the species differences in inner hair cell (IHC) calcium current that we have recently discovered, the susceptibility to noise exp...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7902005/ https://www.ncbi.nlm.nih.gov/pubmed/33634111 http://dx.doi.org/10.3389/fcell.2020.635201 |
_version_ | 1783654473034366976 |
---|---|
author | Liu, Hongchao Peng, Hu Wang, Longhao Xu, Pengcheng Wang, Zhaoyan Liu, Huihui Wu, Hao |
author_facet | Liu, Hongchao Peng, Hu Wang, Longhao Xu, Pengcheng Wang, Zhaoyan Liu, Huihui Wu, Hao |
author_sort | Liu, Hongchao |
collection | PubMed |
description | Noise exposure of a short period at a moderate level can produce permanent cochlear synaptopathy without seeing lasting changes in audiometric threshold. However, due to the species differences in inner hair cell (IHC) calcium current that we have recently discovered, the susceptibility to noise exposure may vary, thereby impact outcomes of noise exposure. In this study, we investigate the consequences of noise exposure in the two commonly used animal models in hearing research, CBA/CaJ (CBA) and C57BL/6J (B6) mice, focusing on the functional changes of cochlear IHCs. In the CBA mice, moderate noise exposure resulted in a typical fully recovered audiometric threshold but a reduced wave I amplitude of auditory brainstem responses. In contrast, both auditory brainstem response threshold and wave I amplitude fully recovered in B6 mice at 2 weeks after noise exposure. Confocal microscopy observations found that ribbon synapses of IHCs recovered in B6 mice but not in CBA mice. To further characterize the molecular mechanism underlying these different phenotypes in synaptopathy, we compared the ratio of Bax/Bcl-2 with the expression of cytochrome-C and found increased activity in CBA mice after noise exposure. Under whole-cell patch clamped IHCs, we acquired two-photon calcium imaging around the active zone to evaluate the Ca(2+) clearance rate and found that CBA mice have a slower calcium clearance rate. Our results indicated that excessive accumulation of calcium due to acoustic overexposure and slow clearance around the presynaptic ribbon might lead to disruption of calcium homeostasis, followed by mitochondrial dysfunction of IHCs that cause susceptibility of noise-induced cochlear synaptopathy in CBA mice. |
format | Online Article Text |
id | pubmed-7902005 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-79020052021-02-24 Differences in Calcium Clearance at Inner Hair Cell Active Zones May Underlie the Difference in Susceptibility to Noise-Induced Cochlea Synaptopathy of C57BL/6J and CBA/CaJ Mice Liu, Hongchao Peng, Hu Wang, Longhao Xu, Pengcheng Wang, Zhaoyan Liu, Huihui Wu, Hao Front Cell Dev Biol Cell and Developmental Biology Noise exposure of a short period at a moderate level can produce permanent cochlear synaptopathy without seeing lasting changes in audiometric threshold. However, due to the species differences in inner hair cell (IHC) calcium current that we have recently discovered, the susceptibility to noise exposure may vary, thereby impact outcomes of noise exposure. In this study, we investigate the consequences of noise exposure in the two commonly used animal models in hearing research, CBA/CaJ (CBA) and C57BL/6J (B6) mice, focusing on the functional changes of cochlear IHCs. In the CBA mice, moderate noise exposure resulted in a typical fully recovered audiometric threshold but a reduced wave I amplitude of auditory brainstem responses. In contrast, both auditory brainstem response threshold and wave I amplitude fully recovered in B6 mice at 2 weeks after noise exposure. Confocal microscopy observations found that ribbon synapses of IHCs recovered in B6 mice but not in CBA mice. To further characterize the molecular mechanism underlying these different phenotypes in synaptopathy, we compared the ratio of Bax/Bcl-2 with the expression of cytochrome-C and found increased activity in CBA mice after noise exposure. Under whole-cell patch clamped IHCs, we acquired two-photon calcium imaging around the active zone to evaluate the Ca(2+) clearance rate and found that CBA mice have a slower calcium clearance rate. Our results indicated that excessive accumulation of calcium due to acoustic overexposure and slow clearance around the presynaptic ribbon might lead to disruption of calcium homeostasis, followed by mitochondrial dysfunction of IHCs that cause susceptibility of noise-induced cochlear synaptopathy in CBA mice. Frontiers Media S.A. 2021-02-05 /pmc/articles/PMC7902005/ /pubmed/33634111 http://dx.doi.org/10.3389/fcell.2020.635201 Text en Copyright © 2021 Liu, Peng, Wang, Xu, Wang, Liu and Wu. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Cell and Developmental Biology Liu, Hongchao Peng, Hu Wang, Longhao Xu, Pengcheng Wang, Zhaoyan Liu, Huihui Wu, Hao Differences in Calcium Clearance at Inner Hair Cell Active Zones May Underlie the Difference in Susceptibility to Noise-Induced Cochlea Synaptopathy of C57BL/6J and CBA/CaJ Mice |
title | Differences in Calcium Clearance at Inner Hair Cell Active Zones May Underlie the Difference in Susceptibility to Noise-Induced Cochlea Synaptopathy of C57BL/6J and CBA/CaJ Mice |
title_full | Differences in Calcium Clearance at Inner Hair Cell Active Zones May Underlie the Difference in Susceptibility to Noise-Induced Cochlea Synaptopathy of C57BL/6J and CBA/CaJ Mice |
title_fullStr | Differences in Calcium Clearance at Inner Hair Cell Active Zones May Underlie the Difference in Susceptibility to Noise-Induced Cochlea Synaptopathy of C57BL/6J and CBA/CaJ Mice |
title_full_unstemmed | Differences in Calcium Clearance at Inner Hair Cell Active Zones May Underlie the Difference in Susceptibility to Noise-Induced Cochlea Synaptopathy of C57BL/6J and CBA/CaJ Mice |
title_short | Differences in Calcium Clearance at Inner Hair Cell Active Zones May Underlie the Difference in Susceptibility to Noise-Induced Cochlea Synaptopathy of C57BL/6J and CBA/CaJ Mice |
title_sort | differences in calcium clearance at inner hair cell active zones may underlie the difference in susceptibility to noise-induced cochlea synaptopathy of c57bl/6j and cba/caj mice |
topic | Cell and Developmental Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7902005/ https://www.ncbi.nlm.nih.gov/pubmed/33634111 http://dx.doi.org/10.3389/fcell.2020.635201 |
work_keys_str_mv | AT liuhongchao differencesincalciumclearanceatinnerhaircellactivezonesmayunderliethedifferenceinsusceptibilitytonoiseinducedcochleasynaptopathyofc57bl6jandcbacajmice AT penghu differencesincalciumclearanceatinnerhaircellactivezonesmayunderliethedifferenceinsusceptibilitytonoiseinducedcochleasynaptopathyofc57bl6jandcbacajmice AT wanglonghao differencesincalciumclearanceatinnerhaircellactivezonesmayunderliethedifferenceinsusceptibilitytonoiseinducedcochleasynaptopathyofc57bl6jandcbacajmice AT xupengcheng differencesincalciumclearanceatinnerhaircellactivezonesmayunderliethedifferenceinsusceptibilitytonoiseinducedcochleasynaptopathyofc57bl6jandcbacajmice AT wangzhaoyan differencesincalciumclearanceatinnerhaircellactivezonesmayunderliethedifferenceinsusceptibilitytonoiseinducedcochleasynaptopathyofc57bl6jandcbacajmice AT liuhuihui differencesincalciumclearanceatinnerhaircellactivezonesmayunderliethedifferenceinsusceptibilitytonoiseinducedcochleasynaptopathyofc57bl6jandcbacajmice AT wuhao differencesincalciumclearanceatinnerhaircellactivezonesmayunderliethedifferenceinsusceptibilitytonoiseinducedcochleasynaptopathyofc57bl6jandcbacajmice |