Cargando…
Machine Learning Approaches Identify Genes Containing Spatial Information From Single-Cell Transcriptomics Data
The development of single-cell sequencing technologies has allowed researchers to gain important new knowledge about the expression profile of genes in thousands of individual cells of a model organism or tissue. A common disadvantage of this technology is the loss of the three-dimensional (3-D) str...
Autores principales: | Loher, Phillipe, Karathanasis, Nestoras |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7902049/ https://www.ncbi.nlm.nih.gov/pubmed/33633771 http://dx.doi.org/10.3389/fgene.2020.612840 |
Ejemplares similares
-
Sampling and ranking spatial transcriptomics data embeddings to identify tissue architecture
por: Lin, Yu, et al.
Publicado: (2022) -
DEEPsc: A Deep Learning-Based Map Connecting Single-Cell Transcriptomics and Spatial Imaging Data
por: Maseda, Floyd, et al.
Publicado: (2021) -
IsoMiRmap: fast, deterministic and exhaustive mining of isomiRs from short RNA-seq datasets
por: Loher, Phillipe, et al.
Publicado: (2021) -
Nuclear and mitochondrial tRNA-lookalikes in the human genome
por: Telonis, Aristeidis G., et al.
Publicado: (2014) -
Machine Learning Classifiers for Endometriosis Using Transcriptomics and Methylomics Data
por: Akter, Sadia, et al.
Publicado: (2019)