Cargando…
Development and Validation of a Predictive Model for Coronary Artery Disease Using Machine Learning
Early identification of coronary artery disease (CAD) can prevent the progress of CAD and effectually lower the mortality rate, so we intended to construct and validate a machine learning model to predict the risk of CAD based on conventional risk factors and lab test data. There were 3,112 CAD pati...
Autores principales: | Wang, Chen, Zhao, Yue, Jin, Bingyu, Gan, Xuedong, Liang, Bin, Xiang, Yang, Zhang, Xiaokang, Lu, Zhibing, Zheng, Fang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7902072/ https://www.ncbi.nlm.nih.gov/pubmed/33634169 http://dx.doi.org/10.3389/fcvm.2021.614204 |
Ejemplares similares
-
Circulating homocysteine and folate concentrations and risk of type 2 diabetes: A retrospective observational study in Chinese adults and a Mendelian randomization analysis
por: Cheng, Yating, et al.
Publicado: (2022) -
Systematic Pharmacology and GEO Database Mining Revealed the Therapeutic Mechanism of Xuefu Zhuyu Decoration for Atherosclerosis Cardiovascular Disease
por: Liang, Bin, et al.
Publicado: (2020) -
Machine learning algorithms for predicting mortality after coronary artery bypass grafting
por: Khalaji, Amirmohammad, et al.
Publicado: (2022) -
Development and validation of a machine learned algorithm to IDENTIFY functionally significant coronary artery disease
por: Stuckey, Thomas, et al.
Publicado: (2022) -
Machine learning models of clinically relevant biomarkers for the prediction of stable obstructive coronary artery disease
por: Kim, Juntae, et al.
Publicado: (2022)