Cargando…
An Efficient Automatic Gait Anomaly Detection Method Based on Semisupervised Clustering
The aim of this work is to develop a common automatic computer method to distinguish human individuals with abnormal gait patterns from those with normal gait patterns. As long as the silhouette gait images of the subjects are obtainable, the proposed method is capable of providing online anomaly ga...
Autor principal: | Yang, Zhenlun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7902142/ https://www.ncbi.nlm.nih.gov/pubmed/33643407 http://dx.doi.org/10.1155/2021/8840156 |
Ejemplares similares
-
Research on Anomaly Identification and Screening and Metallogenic Prediction Based on Semisupervised Neural Network
por: Zhang, Rongqing, et al.
Publicado: (2022) -
Semisupervised Clustering by Iterative Partition and Regression with Neuroscience Applications
por: Qian, Guoqi, et al.
Publicado: (2016) -
SCMAG: A Semisupervised Single-Cell Clustering Method Based on Matrix Aggregation Graph Convolutional Neural Network
por: Peng, Haonan, et al.
Publicado: (2021) -
Enhancement of ELM by Clustering Discrimination Manifold Regularization and Multiobjective FOA for Semisupervised Classification
por: Ye, Qing, et al.
Publicado: (2015) -
mokapot: Fast
and Flexible Semisupervised Learning
for Peptide Detection
por: Fondrie, William E., et al.
Publicado: (2021)