Cargando…
Predicting Tree Species From 3D Laser Scanning Point Clouds Using Deep Learning
Automated species classification from 3D point clouds is still a challenge. It is, however, an important task for laser scanning-based forest inventory, ecosystem models, and to support forest management. Here, we tested the performance of an image classification approach based on convolutional neur...
Autores principales: | Seidel, Dominik, Annighöfer, Peter, Thielman, Anton, Seifert, Quentin Edward, Thauer, Jan-Henrik, Glatthorn, Jonas, Ehbrecht, Martin, Kneib, Thomas, Ammer, Christian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7902704/ https://www.ncbi.nlm.nih.gov/pubmed/33643364 http://dx.doi.org/10.3389/fpls.2021.635440 |
Ejemplares similares
-
How a measure of tree structural complexity relates to architectural benefit‐to‐cost ratio, light availability, and growth of trees
por: Seidel, Dominik, et al.
Publicado: (2019) -
Advanced Aboveground Spatial Analysis as Proxy for the Competitive Environment Affecting Sapling Development
por: Annighöfer, Peter, et al.
Publicado: (2019) -
Assessing Understory Complexity in Beech-dominated Forests (Fagus sylvatica L.) in Central Europe—From Managed to Primary Forests
por: Willim, Katharina, et al.
Publicado: (2019) -
Automatic extraction and measurement of individual trees from mobile laser scanning point clouds of forests
por: Bienert, Anne, et al.
Publicado: (2021) -
Registration of Laser Scanning Point Clouds: A Review
por: Cheng, Liang, et al.
Publicado: (2018)