Cargando…
CID-GCN: An Effective Graph Convolutional Networks for Chemical-Induced Disease Relation Extraction
Automatic extraction of chemical-induced disease (CID) relation from unstructured text is of essential importance for disease treatment and drug development. In this task, some relational facts can only be inferred from the document rather than single sentence. Recently, researchers investigate grap...
Autores principales: | Zeng, Daojian, Zhao, Chao, Quan, Zhe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7902761/ https://www.ncbi.nlm.nih.gov/pubmed/33643385 http://dx.doi.org/10.3389/fgene.2021.624307 |
Ejemplares similares
-
MoGCN: A Multi-Omics Integration Method Based on Graph Convolutional Network for Cancer Subtype Analysis
por: Li, Xiao, et al.
Publicado: (2022) -
LABAMPsGCN: A framework for identifying lactic acid bacteria antimicrobial peptides based on graph convolutional neural network
por: Sun, Tong-Jie, et al.
Publicado: (2022) -
TFC-GCN: Lightweight Temporal Feature Cross-Extraction Graph Convolutional Network for Skeleton-Based Action Recognition
por: Wang, Kaixuan, et al.
Publicado: (2023) -
GCN-IA: User Profile Based on Graph Convolutional Network with Implicit Association Labels
por: Wen, Jie, et al.
Publicado: (2020) -
CR-GCN: Channel-Relationships-Based Graph Convolutional Network for EEG Emotion Recognition
por: Jia, Jingjing, et al.
Publicado: (2022)