Cargando…
Robust Physiological Metrics From Sparsely Sampled Networks
Physiological and biochemical networks are highly complex, involving thousands of nodes as well as a hierarchical structure. True network structure is also rarely known. This presents major challenges for applying classical network theory to these networks. However, complex systems generally share t...
Autores principales: | Cohen, Alan A., Leblanc, Sebastien, Roucou, Xavier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7902772/ https://www.ncbi.nlm.nih.gov/pubmed/33643068 http://dx.doi.org/10.3389/fphys.2021.624097 |
Ejemplares similares
-
Selectivity and robustness of sparse coding networks
por: Paiton, Dylan M., et al.
Publicado: (2020) -
Editorial: Nonlinearity in Living Systems: Theoretical and Practical Perspectives on Metrics of Physiological Signal Complexity
por: Spasić, Sladjana Z., et al.
Publicado: (2019) -
Extrapolation of Ventricular Activation Times From Sparse Electroanatomical Data Using Graph Convolutional Neural Networks
por: Meister, Felix, et al.
Publicado: (2021) -
Sparse and Compositionally Robust Inference of Microbial Ecological Networks
por: Kurtz, Zachary D., et al.
Publicado: (2015) -
OpenVar: functional annotation of variants in non-canonical open reading frames
por: Brunet, Marie A., et al.
Publicado: (2022)