Cargando…
Automated discovery of a robust interatomic potential for aluminum
Machine learning, trained on quantum mechanics (QM) calculations, is a powerful tool for modeling potential energy surfaces. A critical factor is the quality and diversity of the training dataset. Here we present a highly automated approach to dataset construction and demonstrate the method by build...
Autores principales: | Smith, Justin S., Nebgen, Benjamin, Mathew, Nithin, Chen, Jie, Lubbers, Nicholas, Burakovsky, Leonid, Tretiak, Sergei, Nam, Hai Ah, Germann, Timothy, Fensin, Saryu, Barros, Kipton |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7902823/ https://www.ncbi.nlm.nih.gov/pubmed/33623036 http://dx.doi.org/10.1038/s41467-021-21376-0 |
Ejemplares similares
-
Deep learning of dynamically responsive chemical Hamiltonians with semiempirical quantum mechanics
por: Zhou, Guoqing, et al.
Publicado: (2022) -
The ANI-1ccx and ANI-1x data sets, coupled-cluster and density functional theory properties for molecules
por: Smith, Justin S., et al.
Publicado: (2020) -
Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning
por: Smith, Justin S., et al.
Publicado: (2019) -
Predicting phosphorescence energies and inferring wavefunction localization with machine learning
por: Sifain, Andrew E., et al.
Publicado: (2021) -
Interatomic potentials
por: Torrens, Iam
Publicado: (1972)