Cargando…

Artificial Intelligence Segmented Dynamic Video Images for Continuity Analysis in the Detection of Severe Cardiovascular Disease

In this paper, an artificial intelligence segmented dynamic video image based on the process of intensive cardiovascular and cerebrovascular disease monitoring is deeply investigated, and a sparse automatic coding deep neural network with a four layers stack structure is designed to automatically ex...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Xi, Xia, Wei, Bao, Zhuqing, Zhong, Yaohui, Fang, Yu, Yang, Fei, Gu, Xiaohua, Ye, Jing, Huang, Wennuo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7902880/
https://www.ncbi.nlm.nih.gov/pubmed/33642970
http://dx.doi.org/10.3389/fnins.2020.618481
_version_ 1783654621623877632
author Zhu, Xi
Xia, Wei
Bao, Zhuqing
Zhong, Yaohui
Fang, Yu
Yang, Fei
Gu, Xiaohua
Ye, Jing
Huang, Wennuo
author_facet Zhu, Xi
Xia, Wei
Bao, Zhuqing
Zhong, Yaohui
Fang, Yu
Yang, Fei
Gu, Xiaohua
Ye, Jing
Huang, Wennuo
author_sort Zhu, Xi
collection PubMed
description In this paper, an artificial intelligence segmented dynamic video image based on the process of intensive cardiovascular and cerebrovascular disease monitoring is deeply investigated, and a sparse automatic coding deep neural network with a four layers stack structure is designed to automatically extract the deep features of the segmented dynamic video image shot, and six categories of normal, atrial premature, ventricular premature, right bundle branch block, left bundle branch block, and pacing are achieved through hierarchical training and optimization. Accurate recognition of heartbeats with an average accuracy of 99.5%. It provides technical assistance for the intelligent prediction of high-risk cardiovascular diseases like ventricular fibrillation. An intelligent prediction algorithm for sudden cardiac death based on the echolocation network was proposed. By designing an echolocation network with a multilayer serial structure, an intelligent distinction between sudden cardiac death signal and non-sudden death signal was realized, and the signal was predicted 5 min before sudden death occurred, with an average prediction accuracy of 94.32%. Using the self-learning capability of stack sparse auto-coding network, a large amount of label-free data is designed to train the stack sparse auto-coding deep neural network to automatically extract deep representations of plaque features. A small amount of labeled data then introduced to micro-train the entire network. Through the automatic analysis of the fiber cap thickness in the plaques, the automatic identification of thin fiber cap-like vulnerable plaques was achieved, and the average overlap of vulnerable regions reached 87%. The overall time for the automatic plaque and vulnerable plaque recognition algorithm was 0.54 s. It provides theoretical support for accurate diagnosis and endogenous analysis of high-risk cardiovascular diseases.
format Online
Article
Text
id pubmed-7902880
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-79028802021-02-25 Artificial Intelligence Segmented Dynamic Video Images for Continuity Analysis in the Detection of Severe Cardiovascular Disease Zhu, Xi Xia, Wei Bao, Zhuqing Zhong, Yaohui Fang, Yu Yang, Fei Gu, Xiaohua Ye, Jing Huang, Wennuo Front Neurosci Neuroscience In this paper, an artificial intelligence segmented dynamic video image based on the process of intensive cardiovascular and cerebrovascular disease monitoring is deeply investigated, and a sparse automatic coding deep neural network with a four layers stack structure is designed to automatically extract the deep features of the segmented dynamic video image shot, and six categories of normal, atrial premature, ventricular premature, right bundle branch block, left bundle branch block, and pacing are achieved through hierarchical training and optimization. Accurate recognition of heartbeats with an average accuracy of 99.5%. It provides technical assistance for the intelligent prediction of high-risk cardiovascular diseases like ventricular fibrillation. An intelligent prediction algorithm for sudden cardiac death based on the echolocation network was proposed. By designing an echolocation network with a multilayer serial structure, an intelligent distinction between sudden cardiac death signal and non-sudden death signal was realized, and the signal was predicted 5 min before sudden death occurred, with an average prediction accuracy of 94.32%. Using the self-learning capability of stack sparse auto-coding network, a large amount of label-free data is designed to train the stack sparse auto-coding deep neural network to automatically extract deep representations of plaque features. A small amount of labeled data then introduced to micro-train the entire network. Through the automatic analysis of the fiber cap thickness in the plaques, the automatic identification of thin fiber cap-like vulnerable plaques was achieved, and the average overlap of vulnerable regions reached 87%. The overall time for the automatic plaque and vulnerable plaque recognition algorithm was 0.54 s. It provides theoretical support for accurate diagnosis and endogenous analysis of high-risk cardiovascular diseases. Frontiers Media S.A. 2021-02-10 /pmc/articles/PMC7902880/ /pubmed/33642970 http://dx.doi.org/10.3389/fnins.2020.618481 Text en Copyright © 2021 Zhu, Xia, Bao, Zhong, Fang, Yang, Gu, Ye and Huang. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Zhu, Xi
Xia, Wei
Bao, Zhuqing
Zhong, Yaohui
Fang, Yu
Yang, Fei
Gu, Xiaohua
Ye, Jing
Huang, Wennuo
Artificial Intelligence Segmented Dynamic Video Images for Continuity Analysis in the Detection of Severe Cardiovascular Disease
title Artificial Intelligence Segmented Dynamic Video Images for Continuity Analysis in the Detection of Severe Cardiovascular Disease
title_full Artificial Intelligence Segmented Dynamic Video Images for Continuity Analysis in the Detection of Severe Cardiovascular Disease
title_fullStr Artificial Intelligence Segmented Dynamic Video Images for Continuity Analysis in the Detection of Severe Cardiovascular Disease
title_full_unstemmed Artificial Intelligence Segmented Dynamic Video Images for Continuity Analysis in the Detection of Severe Cardiovascular Disease
title_short Artificial Intelligence Segmented Dynamic Video Images for Continuity Analysis in the Detection of Severe Cardiovascular Disease
title_sort artificial intelligence segmented dynamic video images for continuity analysis in the detection of severe cardiovascular disease
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7902880/
https://www.ncbi.nlm.nih.gov/pubmed/33642970
http://dx.doi.org/10.3389/fnins.2020.618481
work_keys_str_mv AT zhuxi artificialintelligencesegmenteddynamicvideoimagesforcontinuityanalysisinthedetectionofseverecardiovasculardisease
AT xiawei artificialintelligencesegmenteddynamicvideoimagesforcontinuityanalysisinthedetectionofseverecardiovasculardisease
AT baozhuqing artificialintelligencesegmenteddynamicvideoimagesforcontinuityanalysisinthedetectionofseverecardiovasculardisease
AT zhongyaohui artificialintelligencesegmenteddynamicvideoimagesforcontinuityanalysisinthedetectionofseverecardiovasculardisease
AT fangyu artificialintelligencesegmenteddynamicvideoimagesforcontinuityanalysisinthedetectionofseverecardiovasculardisease
AT yangfei artificialintelligencesegmenteddynamicvideoimagesforcontinuityanalysisinthedetectionofseverecardiovasculardisease
AT guxiaohua artificialintelligencesegmenteddynamicvideoimagesforcontinuityanalysisinthedetectionofseverecardiovasculardisease
AT yejing artificialintelligencesegmenteddynamicvideoimagesforcontinuityanalysisinthedetectionofseverecardiovasculardisease
AT huangwennuo artificialintelligencesegmenteddynamicvideoimagesforcontinuityanalysisinthedetectionofseverecardiovasculardisease