Cargando…

Discovering themes in medical records of patients with psychogenic non-epileptic seizures

INTRODUCTION: Epileptic and psychogenic non-epileptic seizures (PNES) are common diagnostic problems encountered in hospital practice. This study explores the use of unsupervised machine learning in discovering themes in medical records of patients presenting with PNES. We hypothesised that themes g...

Descripción completa

Detalles Bibliográficos
Autores principales: Lay, Joshua, Seneviratne, Udaya, Fok, Anthony, Roberts, Helene, Phan, Thanh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BMJ Publishing Group 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7903185/
https://www.ncbi.nlm.nih.gov/pubmed/33681804
http://dx.doi.org/10.1136/bmjno-2020-000087
Descripción
Sumario:INTRODUCTION: Epileptic and psychogenic non-epileptic seizures (PNES) are common diagnostic problems encountered in hospital practice. This study explores the use of unsupervised machine learning in discovering themes in medical records of patients presenting with PNES. We hypothesised that themes generated by machine learning are comparable with the classification by human experts. METHODS: This is a retrospective analysis of the medical records in the emergency department of patients (age >18 years) with PNES who underwent inpatient video-electroencephalography monitoring from May 2009 to June 2014 and received a final diagnosis of PNES. Prior to machine learning of written text, we applied a standardised approach in natural language processing to create a document-term matrix (removal of numbers, stop-words and punctuations, transforming fonts to lower case). The words were separated into tokens and treated as if existing within a bag-of-words. A probability of each word existing within a topic (theme) was modelled on multivariate Dirichlet distribution (R Foundation, V.3.5.0). Next, we asked four experts to independently provide a clinical interpretation of the generated topics. When the majority of (≥3) experts agreed, it was regarded as highly congruent. Interactive data are available on the web at (https://gntem2.github.io/PNES/%23topic=1&lambda=0.6&term=). RESULTS: There were 39 patients (74.4% women, median age 35 years with range 20–82). A total of 121 documents were converted to text files for text mining. There were 15 generated topics with 12/15 topics rated as highly congruent. The main themes were about descriptors of seizures and medication use. CONCLUSIONS: The findings from machine learning on PNES-related documentation provides evidence for the feasibility of applying machine-learning methodology to analyse large volumes of medical records. The topics generated by machine learning were congruent with interpretations by clinicians indicating this method can be used for screening of medical conditions among large volumes of medical records.