Cargando…

XCOVNet: Chest X-ray Image Classification for COVID-19 Early Detection Using Convolutional Neural Networks

COVID-19 (also known as SARS-COV-2) pandemic has spread in the entire world. It is a contagious disease that easily spreads from one person in direct contact to another, classified by experts in five categories: asymptomatic, mild, moderate, severe, and critical. Already more than 66 million people...

Descripción completa

Detalles Bibliográficos
Autores principales: Madaan, Vishu, Roy, Aditya, Gupta, Charu, Agrawal, Prateek, Sharma, Anand, Bologa, Cristian, Prodan, Radu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Ohmsha 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7903219/
https://www.ncbi.nlm.nih.gov/pubmed/33642663
http://dx.doi.org/10.1007/s00354-021-00121-7
Descripción
Sumario:COVID-19 (also known as SARS-COV-2) pandemic has spread in the entire world. It is a contagious disease that easily spreads from one person in direct contact to another, classified by experts in five categories: asymptomatic, mild, moderate, severe, and critical. Already more than 66 million people got infected worldwide with more than 22 million active patients as of 5 December 2020 and the rate is accelerating. More than 1.5 million patients (approximately 2.5% of total reported cases) across the world lost their life. In many places, the COVID-19 detection takes place through reverse transcription polymerase chain reaction (RT-PCR) tests which may take longer than 48 h. This is one major reason of its severity and rapid spread. We propose in this paper a two-phase X-ray image classification called XCOVNet for early COVID-19 detection using convolutional neural Networks model. XCOVNet detects COVID-19 infections in chest X-ray patient images in two phases. The first phase pre-processes a dataset of 392 chest X-ray images of which half are COVID-19 positive and half are negative. The second phase trains and tunes the neural network model to achieve a 98.44% accuracy in patient classification.