Cargando…
Synthesis of COVID-19 chest X-rays using unpaired image-to-image translation
Motivated by the lack of publicly available datasets of chest radiographs of positive patients with coronavirus disease 2019 (COVID-19), we build the first-of-its-kind open dataset of synthetic COVID-19 chest X-ray images of high fidelity using an unsupervised domain adaptation approach by leveragin...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7903408/ https://www.ncbi.nlm.nih.gov/pubmed/33643491 http://dx.doi.org/10.1007/s13278-021-00731-5 |
Sumario: | Motivated by the lack of publicly available datasets of chest radiographs of positive patients with coronavirus disease 2019 (COVID-19), we build the first-of-its-kind open dataset of synthetic COVID-19 chest X-ray images of high fidelity using an unsupervised domain adaptation approach by leveraging class conditioning and adversarial training. Our contributions are twofold. First, we show considerable performance improvements on COVID-19 detection using various deep learning architectures when employing synthetic images as additional training set. Second, we show how our image synthesis method can serve as a data anonymization tool by achieving comparable detection performance when trained only on synthetic data. In addition, the proposed data generation framework offers a viable solution to the COVID-19 detection in particular, and to medical image classification tasks in general. Our publicly available benchmark dataset (https://github.com/hasibzunair/synthetic-covid-cxr-dataset.) consists of 21,295 synthetic COVID-19 chest X-ray images. The insights gleaned from this dataset can be used for preventive actions in the fight against the COVID-19 pandemic. |
---|