Cargando…
MicroRNA-145-5p aggravates cell apoptosis and oxidative stress in tongue squamous cell carcinoma
MicroRNA-145-5p (miR-145-5p) is expressed in a variety of tumors, but the mechanism underlying miR-145-5p in tongue squamous cell carcinoma (TSCC) is not fully understood. Therefore, the present study investigated the role of miR-145-5p in TSCC. miR-145-5p expression levels in TSCC tissues were anal...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7903421/ https://www.ncbi.nlm.nih.gov/pubmed/33732346 http://dx.doi.org/10.3892/etm.2021.9804 |
Sumario: | MicroRNA-145-5p (miR-145-5p) is expressed in a variety of tumors, but the mechanism underlying miR-145-5p in tongue squamous cell carcinoma (TSCC) is not fully understood. Therefore, the present study investigated the role of miR-145-5p in TSCC. miR-145-5p expression levels in TSCC tissues were analyzed via reverse transcription-quantitative PCR. miR-145-5p mimics and inhibitors were transfected into SCC9 and Cal27 cells. The stability and invasion of SCC9 and Cal27 cells were analyzed by performing Transwell assays, while PI and Annexin V were used to detect cell apoptosis. Oxidative stress levels of superoxide dismutase, malondialdehyde and glutathione peroxidase were measured via ELISA. PI3K/AKT signaling pathway-associated protein expression levels were evaluated using western blotting. miR-145-5p was consistently downregulated in TSCC tissues compared with healthy tissues. miR-145-5p overexpression decreased cell stability and invasion, but promoted cell apoptosis and oxidative stress. In addition, PI3K, AKT and phosphorylated-AKT expression levels were significantly diminished. The results indicated that miR-145-5p overexpression inhibited SCC9 and Cal27 cell stability and invasion, promoted SCC9 and Cal27 cell apoptosis and oxidative stress, and inhibited the PI3K/AKT signaling pathway. The results of the present study suggested that miR-145 may serve as a molecular marker of TSCC. |
---|