Cargando…

MSK1 downregulation is involved in inflammatory responses following subarachnoid hemorrhage in rats

Subarachnoid hemorrhage (SAH) is a life-threatening neurological disease. Recently, inflammatory factors have been confirmed to be responsible for the brain damage associated with SAH. Therefore, studying the post-SAH inflammatory reaction may clarify the mechanism of SAH. Mitogen and stress-activat...

Descripción completa

Detalles Bibliográficos
Autores principales: Ning, Bo, Li, Zhen, Ning, Lei, Wu, Jun, Chen, Xin, Jiang, Pengjun, Lin, Fuxin, Zhao, Bing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7903447/
https://www.ncbi.nlm.nih.gov/pubmed/33732337
http://dx.doi.org/10.3892/etm.2021.9795
Descripción
Sumario:Subarachnoid hemorrhage (SAH) is a life-threatening neurological disease. Recently, inflammatory factors have been confirmed to be responsible for the brain damage associated with SAH. Therefore, studying the post-SAH inflammatory reaction may clarify the mechanism of SAH. Mitogen and stress-activated protein kinase 1 (MSK1) causes the phosphorylation of NF-κB and regulates the activity of pro-inflammatory transcription factors. The present study aimed to identify the potential role of MSK1 in inflammation and brain damage development following SAH. A cisterna magna blood injection model was established in Sprague-Dawley rats. Hematoxylin and eosin staining, reverse transcription-quantitative polymerase chain reaction assays and double immunofluorescence staining were used to analyze the role of MSK1, IL-1β and TNF-α in the inflammatory process after SAH. In a model of lipopolysaccharide-induced astrocyte inflammation, the effect of overexpressing MSK1 overexpression was analyzed by western blot analysis. The results demonstrated that MSK1 expression were negatively correlated with TNF-α and IL-1β expression levels, and reached peak levels 2 days after TNF-α and IL-1β. The double immunofluorescence staining results showed that the expression of MSK1 was in the same plane of view as TNF-α and IL-1β in the brain cortex. Furthermore, the in vitro studies indicated that the overexpression of MSK1 inhibited the expression of TNF-α and IL-1β following LPS challenge. These results imply that MSK1 may be involved in the inflammatory reaction following SAH, and may potentially serve as a negative regulator of inflammation.