Cargando…

4-Hexylresorcinol inhibits osteoclastogenesis by suppressing the NF-κB signaling pathway and reverses bone loss in ovariectomized mice

4-Hexylresorcinol (4HR) is a small organic compound that is widely used as an antiseptic and antioxidant. In the present study, its role in osteoclastogenesis was investigated. Bone marrow-derived macrophages from mice were used to examine the role of 4HR in osteogenesis. An ovariectomy (OVX) mouse...

Descripción completa

Detalles Bibliográficos
Autores principales: Yi, Wenkai, Liu, Tao, Gao, Xinfeng, Xie, Yonghua, Liu, Ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7903454/
https://www.ncbi.nlm.nih.gov/pubmed/33732327
http://dx.doi.org/10.3892/etm.2021.9785
Descripción
Sumario:4-Hexylresorcinol (4HR) is a small organic compound that is widely used as an antiseptic and antioxidant. In the present study, its role in osteoclastogenesis was investigated. Bone marrow-derived macrophages from mice were used to examine the role of 4HR in osteogenesis. An ovariectomy (OVX) mouse model was constructed to examine the effect of 4HR in vivo, followed by hematoxylin and eosin and tartrate resistant acid phosphatase staining. In the present study, 4HR effectively suppressed receptor activator of NF-κB ligand-induced osteoclastogenesis in a dose-dependent manner. 4HR was also found to significantly suppress the expression of osteoclast (OC)-specific markers, including tartrate-resistant acid phosphatase, cathepsin K, nuclear factor of activated T-cell cytoplasmic 1 and c-Fos in the presence of RANKL in BMMs. Furthermore, 4HR inhibited osteoclastogenesis by inhibiting the activation of the NF-κB signaling pathway in BMMs. Consistent with the in vitro results, 4HR effectively ameliorated OVX-induced bone loss and markedly reduced OC number in the proximal tibia in vivo. In conclusion, the present results suggested that 4HR inhibited osteoclastogenesis in vitro and rescued bone loss in vivo, suggesting that 4HR may serve as a novel therapeutic agent for osteoporosis treatment.