Cargando…
Iodine status five years after the adjustment of universal salt iodization: a cross-sectional study in Fujian Province, China
BACKGROUND: Universal salt iodization program was introduced to China to eliminate iodine deficiency disorders in 1995. In 2012, Fujian Province decreased the concentration of iodized table salt according to the national unified requirement. This study aimed to assess the effect on iodine status aft...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7903767/ https://www.ncbi.nlm.nih.gov/pubmed/33622335 http://dx.doi.org/10.1186/s12937-021-00676-7 |
Sumario: | BACKGROUND: Universal salt iodization program was introduced to China to eliminate iodine deficiency disorders in 1995. In 2012, Fujian Province decreased the concentration of iodized table salt according to the national unified requirement. This study aimed to assess the effect on iodine status after the adjustment, providing evidence for further adjustment in Fujian Province. METHODS: Sampling units were selected by multistage cluster sampling method. In each sampling unit, table salt was collected from 30 households. A total of 2,471 people in 2009 and 4,806 people in 2017 provided urine samples and were included in this cross-sectional analysis. Median iodized salt concentration and median urine iodine concentration were present by median and interquartile range. RESULTS: Median iodized salt decreased from 29.8 mg/kg in 2009 to 23.9 mg/kg in 2017. The median urinary iodine concentrations for school-age children in 2017 in coastal urban area, non-coastal urban area, coastal rural area and non-coastal rural area were 163.6µg/L (interquartile range = 100.1–252.0µg/L), 198.9µg/L (interquartile range = 128.0-294.0µg/L), 181.8µg/L (interquartile range = 114.1–257.0µg/L) and 218.2µg/L (interquartile range = 148.1-306.5µg/L), respectively. The median urinary iodine concentrations for adults in 2017 in these areas were 151.1µg/L (interquartile range = 98.3-231.7µg/L), 168.7µg/L (interquartile range = 109.6–242.0µg/L), 167.7µg/L (interquartile range = 105.7-245.7µg/L) and 182.7µg/L (interquartile range = 117.1-258.9µg/L). The median urinary iodine concentrations for pregnant women in 2017 in these areas were 157.7µg/L (interquartile range = 106.9-223.8µg/L), 141.5µg/L (interquartile range = 97.7-207.6µg/L), 127.3µg/L (interquartile range = 90.0-184.5µg/L) and 144.8µg/L (interquartile range = 99.9-184.5µg/L). The median urinary iodine concentrations for lactating women in 2017 in these areas were 122.7µg/L (interquartile range = 84.1–172.0µg/L), 123.7µg/L (interquartile range = 70.7-184.7µg/L), 105.8µg/L (interquartile range = 67.1-152.3µg/L) and 110.2µg/L (interquartile range = 74.1-170.3µg/L). CONCLUSIONS: The overall urinary iodine concentrations among school-age children, adults and lactating women dramatically decreased after implementing the new standard. Almost all of them were iodine adequate, suggesting we reached the expected aim of iodized salt adjustment. However, pregnant women were iodine insufficient after adjustment. Therefore, we should continue the surveillance of iodine status of populations and focus on the additional iodine supplement strategies for pregnant women. |
---|