Cargando…
Effects and Mechanism of Noninvasive Positive-Pressure Ventilation in a Rat Model of Heart Failure Due to Myocardial Infarction
BACKGROUND: Impaired heart function induced by myocardial infarction is a leading cause of chronic heart failure (HF). This study aimed to investigate the effects and mechanism of noninvasive positive-pressure ventilation (NIPPV) in a rat model of HF due to myocardial infarction. MATERIAL/METHODS: T...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Scientific Literature, Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7903847/ https://www.ncbi.nlm.nih.gov/pubmed/33609350 http://dx.doi.org/10.12659/MSM.928476 |
Sumario: | BACKGROUND: Impaired heart function induced by myocardial infarction is a leading cause of chronic heart failure (HF). This study aimed to investigate the effects and mechanism of noninvasive positive-pressure ventilation (NIPPV) in a rat model of HF due to myocardial infarction. MATERIAL/METHODS: To explore the therapeutic effect and mechanism of NIPPV on acute myocardial infarction-induced HF, we established a rat model of HF by ligating the anterior descending branch of the left coronary artery and confirmed by ultrasonic cardiography and brain natriuretic peptide 45 detection. RESULTS: The levels of heat-shock protein (HSP)-70 increased and matrix metalloproteinase (MMP)-2, MMP-9, and tumor necrosis factor (TNF)-α decreased in the group that received NIPPV treatment compared with the control group. In addition, the histopathologic results showed less severe inflammatory infiltration and a smaller area of myocardial fibrosis in the NIPPV treatment group. CONCLUSIONS: In a rat model of HF due to myocardial infarction, NIPPV resulted in increased levels of HSP70 and reduced expression of MMP2, MMP9, and TNF-α and reduced myocardial neutrophil infiltration and fibrosis. Taken together, we showed that NIPPV is an effective treatment for HF induced by myocardial infarction by inhibiting the release of inflammatory factors and preventing microvascular embolism. |
---|