Cargando…
Behavioural and antennal responses of Aedes aegypti (l.) (Diptera: Culicidae) gravid females to chemical cues from conspecific larvae
Mass trapping of gravid females represents one promising strategy for the development of sustainable tools against Aedes aegypti. However, this technique requires the development of effective odorant lures that can compete with natural breeding sites. The presence of conspecific larvae has been show...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7904138/ https://www.ncbi.nlm.nih.gov/pubmed/33626104 http://dx.doi.org/10.1371/journal.pone.0247657 |
Sumario: | Mass trapping of gravid females represents one promising strategy for the development of sustainable tools against Aedes aegypti. However, this technique requires the development of effective odorant lures that can compete with natural breeding sites. The presence of conspecific larvae has been shown to stimulate oviposition. Hence, we evaluated the role of four major molecules previously identified from Ae. aegypti larvae (isovaleric, myristoleic, myristic [i.e. tetradecanoic], and pentadecanoic acids) on the oviposition of conspecific females, as well as their olfactory perception to evaluate their range of detection. Using flight cage assays, the preference of gravid females to oviposit in water that previously contained larvae (LHW) or containing the four larval compounds was evaluated. Then, compounds and doses inducing the highest stimulation were challenged for their efficacy against LHW. Only isovaleric acid elicited antennal response, suggesting that the other compounds may act as taste cues. Pentadecanoic acid induced significant oviposition stimulation, especially when dosed at 10 ppm. Myristoleic acid and isovaleric acid deterred oviposition at 10 and 100 ppm, while no effect on oviposition was observed with myristic acid irrespectively of the dose tested. When the four compounds were pooled to mimic larvae’s chemical signature, they favored oviposition at 1 ppm but negatively affected egg-laying at higher concentrations. When properly dosed, pentadecanoic acid and the blend of compounds may be promising lures for ovitraps as they could compete with LHW. Due to their low volatility, their effect should be further evaluated under field conditions, in addition with long-range attractants for developing effective tools against gravid females. |
---|