Cargando…

A Joint Model for Macular Edema Analysis in Optical Coherence Tomography Images Based on Image Enhancement and Segmentation

Optical coherence tomography (OCT) provides the visualization of macular edema which can assist ophthalmologists in the diagnosis of ocular diseases. Macular edema is a major cause of vision loss in patients with retinal vein occlusion (RVO). However, manual delineation of macular edema is a laborio...

Descripción completa

Detalles Bibliográficos
Autores principales: Tao, Zhifu, Zhang, Wenping, Yao, Mudi, Zhong, Yuanfu, Sun, Yanan, Li, Xiu-Miao, Yao, Jin, Jiang, Qin, Lu, Peirong, Wang, Zhenhua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7904365/
https://www.ncbi.nlm.nih.gov/pubmed/33681374
http://dx.doi.org/10.1155/2021/6679556
Descripción
Sumario:Optical coherence tomography (OCT) provides the visualization of macular edema which can assist ophthalmologists in the diagnosis of ocular diseases. Macular edema is a major cause of vision loss in patients with retinal vein occlusion (RVO). However, manual delineation of macular edema is a laborious and time-consuming task. This study proposes a joint model for automatic delineation of macular edema in OCT images. This model consists of two steps: image enhancement using a bioinspired algorithm and macular edema segmentation using a Gaussian-filtering regularized level set (SBGFRLS) algorithm. We then evaluated the delineation efficiency using the following parameters: accuracy, precision, sensitivity, specificity, Dice's similarity coefficient, IOU, and kappa coefficient. Compared with the traditional level set algorithms, including C-V and GAC, the proposed model had higher efficiency in macular edema delineation as shown by reduced processing time and iteration times. Moreover, the accuracy, precision, sensitivity, specificity, Dice's similarity coefficient, IOU, and kappa coefficient for macular edema delineation could reach 99.7%, 97.8%, 96.0%, 99.0%, 96.9%, 94.0%, and 96.8%, respectively. More importantly, the proposed model had comparable precision but shorter processing time compared with manual delineation. Collectively, this study provides a novel model for the delineation of macular edema in OCT images, which can assist the ophthalmologists for the screening and diagnosis of retinal diseases.