Cargando…
Exploring the impacts of travel-implied policy factors on COVID-19 spread within communities based on multi-source data interpretations
The global Coronavirus Disease 2019 (COVID-19) pandemic has led to the implementation of social distancing measures such as work-from-home orders that have drastically changed people's travel-related behavior. As countries are easing up these measures and people are resuming their pre-pandemic...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7904495/ https://www.ncbi.nlm.nih.gov/pubmed/33706209 http://dx.doi.org/10.1016/j.healthplace.2021.102538 |
Sumario: | The global Coronavirus Disease 2019 (COVID-19) pandemic has led to the implementation of social distancing measures such as work-from-home orders that have drastically changed people's travel-related behavior. As countries are easing up these measures and people are resuming their pre-pandemic activities, the second wave of COVID-19 is observed in many countries. This study proposes a Community Activity Score (CAS) based on inter-community traffic characteristics (in and out of community traffic volume and travel distance) to capture the current travel-related activity level compared to the pre-pandemic baseline and study its relationship with confirmed COVID-19 cases. Fourteen other travel-related factors belonging to five categories (Social Distancing Index, residents staying at home, travel frequency and distance, mobility trend, and out-of-county visitors) and three social distancing measures (stay-at-home order, face-covering order, and self-quarantine for out-of-county travels) are also considered to reflect the likelihood of exposure to the COVID-19. Considering that it usually takes days from exposure to confirming the infection, the exposure-to-confirm temporal delay between the time-varying travel-related factors and their impacts on the number of confirmed COVID-19 cases is considered in this study. Honolulu County in the State of Hawaii is used as a case study to evaluate the proposed CAS and other factors on confirmed COVID-19 cases with various temporal delays at a county-level. Negative Binomial models were chosen to study the impacts of travel-related factors and social distancing measures on COVID-19 cases. The case study results show that CAS and other factors are correlated with COVID-19 spread, and models that factor in the exposure-to-confirm temporal delay perform better in forecasting COVID-19 cases later. Policymakers can use the study's various findings and insights to evaluate the impacts of social distancing policies on travel and effectively allocate resources for the possible increase in confirmed COVID-19 cases. |
---|