Cargando…

Benefit of a single simulated hypobaric hypoxia in healthy mice performance and analysis of mitochondria-related gene changes

Simulated hypobaric hypoxia (SHH) training has been used to enhance running performance. However, no studies have evaluated the effects of a single SHH exposure on healthy mice performance and analyzed the changes of mitochondria-related genes in the central nervous system. The current study used a...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Fei-Fei, Zhang, Kun-Long, Wang, Zheng-Mei, Yang, Yi, Li, Shao-Hua, Wang, Jia-Qi, Ma, Jin, Yang, Yan-Ling, Zhang, Hai-Feng, Wang, Ya-Yun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7904831/
https://www.ncbi.nlm.nih.gov/pubmed/33627689
http://dx.doi.org/10.1038/s41598-020-80425-8
Descripción
Sumario:Simulated hypobaric hypoxia (SHH) training has been used to enhance running performance. However, no studies have evaluated the effects of a single SHH exposure on healthy mice performance and analyzed the changes of mitochondria-related genes in the central nervous system. The current study used a mouse decompression chamber to simulate mild hypobaric hypoxia at the high altitude of 5000 m or severe hypobaric hypoxia at 8000 m for 16 h (SHH5000 & SHH8000, respectively). Then, the mouse behavioral tests were recorded by a modified Noldus video tracking. Third, the effects of SHH on 8 mitochondria-related genes of Drp1, Mfn1, Mfn2, Opa1, TFAM, SGK1, UCP2 and UCP4, were assessed in cerebellum, hippocampus and gastrocnemius muscles. The results have shown that a single mild or severe HH improves healthy mice performance. In cerebellum, 6 of all 8 detected genes (except Mfn2 and UCP4) did not change after SHH. In hippocampus, all detected genes did not change after SHH. In muscles, 7 of all 8 detected genes (except Opa1) did not change after SHH. The present study has indicated the benefit of a single SHH in healthy mice performance, which would due to the stabilized mitochondria against a mild stress state.