Cargando…

A simple low-latency real-time certifiable quantum random number generator

Quantum random numbers distinguish themselves from others by their intrinsic unpredictability arising from the principles of quantum mechanics. As such they are extremely useful in many scientific and real-world applications with considerable efforts going into their realizations. Most demonstration...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yanbao, Lo, Hsin-Pin, Mink, Alan, Ikuta, Takuya, Honjo, Toshimori, Takesue, Hiroki, Munro, William J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7904850/
https://www.ncbi.nlm.nih.gov/pubmed/33627660
http://dx.doi.org/10.1038/s41467-021-21069-8
Descripción
Sumario:Quantum random numbers distinguish themselves from others by their intrinsic unpredictability arising from the principles of quantum mechanics. As such they are extremely useful in many scientific and real-world applications with considerable efforts going into their realizations. Most demonstrations focus on high asymptotic generation rates. For this goal, a large number of repeated trials are required to accumulate a significant store of certifiable randomness, resulting in a high latency between the initial request and the delivery of the requested random bits. Here we demonstrate low-latency real-time certifiable randomness generation from measurements on photonic time-bin states. For this, we develop methods to certify randomness taking into account adversarial imperfections in both the state preparation and the measurement apparatus. Every 0.12 s we generate a block of 8192 random bits which are certifiable against all quantum adversaries with an error bounded by 2(−64). Our quantum random number generator is thus well suited for realizing a continuously-operating, high-security and high-speed quantum randomness beacon.