Cargando…
Clinical Enhancement in AI-Based Post-processed Fast-Scan Low-Dose CBCT for Head and Neck Adaptive Radiotherapy
Purpose: To assess image quality and uncertainty in organ-at-risk segmentation on cone beam computed tomography (CBCT) enhanced by deep-learning convolutional neural network (DCNN) for head and neck cancer. Methods: An in-house DCNN was trained using forty post-operative head and neck cancer patient...
Autores principales: | Chen, Wen, Li, Yimin, Yuan, Nimu, Qi, Jinyi, Dyer, Brandon A., Sensoy, Levent, Benedict, Stanley H., Shang, Lu, Rao, Shyam, Rong, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7904899/ https://www.ncbi.nlm.nih.gov/pubmed/33733226 http://dx.doi.org/10.3389/frai.2020.614384 |
Ejemplares similares
-
Integration of AI and Machine Learning in Radiotherapy QA
por: Chan, Maria F., et al.
Publicado: (2020) -
The rise of generative AI and enculturating AI writing in postsecondary education
por: Pedersen, Isabel
Publicado: (2023) -
Considerations on the regulation of AI systems in the financial sector by the AI Act
por: Mazzini, Gabriele, et al.
Publicado: (2023) -
Governing Ethical AI Transformation: A Case Study of AuroraAI
por: Leikas, Jaana, et al.
Publicado: (2022) -
Human-AI teams—Challenges for a team-centered AI at work
por: Hagemann, Vera, et al.
Publicado: (2023)