Cargando…
Prediction of drug–target binding affinity using similarity-based convolutional neural network
Identifying novel drug–target interactions (DTIs) plays an important role in drug discovery. Most of the computational methods developed for predicting DTIs use binary classification, whose goal is to determine whether or not a drug–target (DT) pair interacts. However, it is more meaningful but also...
Autores principales: | Shim, Jooyong, Hong, Zhen-Yu, Sohn, Insuk, Hwang, Changha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7904939/ https://www.ncbi.nlm.nih.gov/pubmed/33627791 http://dx.doi.org/10.1038/s41598-021-83679-y |
Ejemplares similares
-
Predicting Successes and Failures of Clinical Trials With Outer Product–Based Convolutional Neural Network
por: Seo, Sangwoo, et al.
Publicado: (2021) -
Kernel-based geographically and temporally weighted autoregressive model for house price estimation
por: Shim, Jooyong, et al.
Publicado: (2018) -
Binding affinity predictions with hybrid quantum-classical convolutional neural networks
por: Domingo, L., et al.
Publicado: (2023) -
DeepMHADTA: Prediction of Drug-Target Binding Affinity Using Multi-Head Self-Attention and Convolutional Neural Network
por: Deng, Lei, et al.
Publicado: (2022) -
SE-OnionNet: A Convolution Neural Network for Protein–Ligand Binding Affinity Prediction
por: Wang, Shudong, et al.
Publicado: (2021)