Cargando…
Application of Radiomics Analysis Based on CT Combined With Machine Learning in Diagnostic of Pancreatic Neuroendocrine Tumors Patient’s Pathological Grades
PURPOSE: To evaluate the value of multiple machine learning methods in classifying pathological grades (G1,G2, and G3), and to provide the best machine learning method for the identification of pathological grades of pancreatic neuroendocrine tumors (PNETs) based on radiomics. MATERIALS AND METHODS:...
Autores principales: | Zhang, Tao, Zhang, YueHua, Liu, Xinglong, Xu, Hanyue, Chen, Chaoyue, Zhou, Xuan, Liu, Yichun, Ma, Xuelei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7905094/ https://www.ncbi.nlm.nih.gov/pubmed/33643890 http://dx.doi.org/10.3389/fonc.2020.521831 |
Ejemplares similares
-
Application of CT-Based Radiomics in Discriminating Pancreatic Cystadenomas From Pancreatic Neuroendocrine Tumors Using Machine Learning Methods
por: Han, Xuejiao, et al.
Publicado: (2021) -
Differentiation of Low-Grade Astrocytoma From Anaplastic Astrocytoma Using Radiomics-Based Machine Learning Techniques
por: Chen, Boran, et al.
Publicado: (2021) -
The Diagnostic Value of Radiomics-Based Machine Learning in Predicting the Grade of Meningiomas Using Conventional Magnetic Resonance Imaging: A Preliminary Study
por: Chen, Chaoyue, et al.
Publicado: (2019) -
Editorial: Novel Methods for Oncologic Imaging Analysis: Radiomics, Machine Learning, and Artificial Intelligence
por: Xu, Hanyue, et al.
Publicado: (2021) -
Ability of Radiomics in Differentiation of Anaplastic Oligodendroglioma From Atypical Low-Grade Oligodendroglioma Using Machine-Learning Approach
por: Zhang, Yang, et al.
Publicado: (2019)