Cargando…
Molting strategies of Arctic seals drive annual patterns in metabolism
Arctic seals, including spotted (Phoca largha), ringed (Pusa hispida) and bearded (Erignathus barbatus) seals, are directly affected by sea ice loss. These species use sea ice as a haul-out substrate for various critical functions, including their annual molt. Continued environmental warming will in...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7905162/ https://www.ncbi.nlm.nih.gov/pubmed/33659059 http://dx.doi.org/10.1093/conphys/coaa112 |
_version_ | 1783655056154820608 |
---|---|
author | Thometz, Nicole M Hermann-Sorensen, Holly Russell, Brandon Rosen, David A S Reichmuth, Colleen |
author_facet | Thometz, Nicole M Hermann-Sorensen, Holly Russell, Brandon Rosen, David A S Reichmuth, Colleen |
author_sort | Thometz, Nicole M |
collection | PubMed |
description | Arctic seals, including spotted (Phoca largha), ringed (Pusa hispida) and bearded (Erignathus barbatus) seals, are directly affected by sea ice loss. These species use sea ice as a haul-out substrate for various critical functions, including their annual molt. Continued environmental warming will inevitably alter the routine behavior and overall energy budgets of Arctic seals, but it is difficult to quantify these impacts as their metabolic requirements are not well known—due in part to the difficulty of studying wild individuals. Thus, data pertaining to species-specific energy demands are urgently needed to better understand the physiological consequences of rapid environmental change. We used open-flow respirometry over a four-year period to track fine-scale, longitudinal changes in the resting metabolic rate (RMR) of four spotted seals, three ringed seals and one bearded seal trained to participate in research. Simultaneously, we collected complementary physiological and environmental data. Species-specific metabolic demands followed expected patterns based on body size, with the largest species, the bearded seal, exhibiting the highest absolute RMR (0.48 ± 0.04 L O(2) min(−1)) and the lowest mass-specific RMR (4.10 ± 0.47 ml O(2) min(−1) kg(−1)), followed by spotted (absolute: 0.33 ± 0.07 L O(2) min(−1); mass-specific: 6.13 ± 0.73 ml O(2) min(−1) kg(−1)) and ringed (absolute: 0.20 ± 0.04 L O(2) min(−1); mass-specific: 7.01 ± 1.38 ml O(2) min(−1) kg(−1)) seals. Further, we observed clear and consistent annual patterns in RMR that related to the distinct molting strategies of each species. For species that molted over relatively short intervals—spotted (33 ± 4 days) and ringed (28 ± 6 days) seals—metabolic demands increased markedly in association with molt. In contrast, the bearded seal exhibited a prolonged molting strategy (119 ± 2 days), which appeared to limit the overall cost of molting as indicated by a relatively stable annual RMR. These findings highlight energetic trade-offs associated with different molting strategies and provide quantitative data that can be used to assess species-specific vulnerabilities to changing conditions. |
format | Online Article Text |
id | pubmed-7905162 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-79051622021-03-02 Molting strategies of Arctic seals drive annual patterns in metabolism Thometz, Nicole M Hermann-Sorensen, Holly Russell, Brandon Rosen, David A S Reichmuth, Colleen Conserv Physiol Research Article Arctic seals, including spotted (Phoca largha), ringed (Pusa hispida) and bearded (Erignathus barbatus) seals, are directly affected by sea ice loss. These species use sea ice as a haul-out substrate for various critical functions, including their annual molt. Continued environmental warming will inevitably alter the routine behavior and overall energy budgets of Arctic seals, but it is difficult to quantify these impacts as their metabolic requirements are not well known—due in part to the difficulty of studying wild individuals. Thus, data pertaining to species-specific energy demands are urgently needed to better understand the physiological consequences of rapid environmental change. We used open-flow respirometry over a four-year period to track fine-scale, longitudinal changes in the resting metabolic rate (RMR) of four spotted seals, three ringed seals and one bearded seal trained to participate in research. Simultaneously, we collected complementary physiological and environmental data. Species-specific metabolic demands followed expected patterns based on body size, with the largest species, the bearded seal, exhibiting the highest absolute RMR (0.48 ± 0.04 L O(2) min(−1)) and the lowest mass-specific RMR (4.10 ± 0.47 ml O(2) min(−1) kg(−1)), followed by spotted (absolute: 0.33 ± 0.07 L O(2) min(−1); mass-specific: 6.13 ± 0.73 ml O(2) min(−1) kg(−1)) and ringed (absolute: 0.20 ± 0.04 L O(2) min(−1); mass-specific: 7.01 ± 1.38 ml O(2) min(−1) kg(−1)) seals. Further, we observed clear and consistent annual patterns in RMR that related to the distinct molting strategies of each species. For species that molted over relatively short intervals—spotted (33 ± 4 days) and ringed (28 ± 6 days) seals—metabolic demands increased markedly in association with molt. In contrast, the bearded seal exhibited a prolonged molting strategy (119 ± 2 days), which appeared to limit the overall cost of molting as indicated by a relatively stable annual RMR. These findings highlight energetic trade-offs associated with different molting strategies and provide quantitative data that can be used to assess species-specific vulnerabilities to changing conditions. Oxford University Press 2021-01-05 /pmc/articles/PMC7905162/ /pubmed/33659059 http://dx.doi.org/10.1093/conphys/coaa112 Text en © The Author(s) 2021. Published by Oxford University Press and the Society for Experimental Biology. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Thometz, Nicole M Hermann-Sorensen, Holly Russell, Brandon Rosen, David A S Reichmuth, Colleen Molting strategies of Arctic seals drive annual patterns in metabolism |
title | Molting strategies of Arctic seals drive annual patterns in metabolism |
title_full | Molting strategies of Arctic seals drive annual patterns in metabolism |
title_fullStr | Molting strategies of Arctic seals drive annual patterns in metabolism |
title_full_unstemmed | Molting strategies of Arctic seals drive annual patterns in metabolism |
title_short | Molting strategies of Arctic seals drive annual patterns in metabolism |
title_sort | molting strategies of arctic seals drive annual patterns in metabolism |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7905162/ https://www.ncbi.nlm.nih.gov/pubmed/33659059 http://dx.doi.org/10.1093/conphys/coaa112 |
work_keys_str_mv | AT thometznicolem moltingstrategiesofarcticsealsdriveannualpatternsinmetabolism AT hermannsorensenholly moltingstrategiesofarcticsealsdriveannualpatternsinmetabolism AT russellbrandon moltingstrategiesofarcticsealsdriveannualpatternsinmetabolism AT rosendavidas moltingstrategiesofarcticsealsdriveannualpatternsinmetabolism AT reichmuthcolleen moltingstrategiesofarcticsealsdriveannualpatternsinmetabolism |