Cargando…
Radiomics Features Predict Telomerase Reverse Transcriptase Promoter Mutations in World Health Organization Grade II Gliomas via a Machine-Learning Approach
The detection of mutations in telomerase reverse transcriptase promoter (pTERT) is important since preoperative diagnosis of pTERT status helps with evaluating prognosis and determining the surgical strategy. Here, we aimed to establish a radiomics-based machine-learning algorithm and evaluated its...
Autores principales: | Fang, Shengyu, Fan, Ziwen, Sun, Zhiyan, Li, Yiming, Liu, Xing, Liang, Yuchao, Liu, Yukun, Zhou, Chunyao, Zhu, Qiang, Zhang, Hong, Li, Tianshi, Li, Shaowu, Jiang, Tao, Wang, Yinyan, Wang, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7905226/ https://www.ncbi.nlm.nih.gov/pubmed/33643908 http://dx.doi.org/10.3389/fonc.2020.606741 |
Ejemplares similares
-
Preoperative Radiomics Analysis of 1p/19q Status in WHO Grade II Gliomas
por: Fan, Ziwen, et al.
Publicado: (2021) -
Image-Based Differentiation of Intracranial Metastasis From Glioblastoma Using Automated Machine Learning
por: Liu, Yukun, et al.
Publicado: (2022) -
IDH mutation-specific radiomic signature in lower-grade gliomas
por: Liu, Xing, et al.
Publicado: (2019) -
Radiogenomics of lower-grade gliomas: a radiomic signature as a biological surrogate for survival prediction
por: Qian, Zenghui, et al.
Publicado: (2018) -
A radiomic signature as a non-invasive predictor of progression-free survival in patients with lower-grade gliomas
por: Liu, Xing, et al.
Publicado: (2018)