Cargando…
EEG-Based Driving Fatigue Detection Using a Two-Level Learning Hierarchy Radial Basis Function
Electroencephalography (EEG)-based driving fatigue detection has gained increasing attention recently due to the non-invasive, low-cost, and potable nature of the EEG technology, but it is still challenging to extract informative features from noisy EEG signals for driving fatigue detection. Radial...
Autores principales: | Ren, Ziwu, Li, Rihui, Chen, Bin, Zhang, Hongmiao, Ma, Yuliang, Wang, Chushan, Lin, Ying, Zhang, Yingchun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7905350/ https://www.ncbi.nlm.nih.gov/pubmed/33643018 http://dx.doi.org/10.3389/fnbot.2021.618408 |
Ejemplares similares
-
Driving Fatigue Detection from EEG Using a Modified PCANet Method
por: Ma, Yuliang, et al.
Publicado: (2019) -
Cortical Hemodynamic Response and Connectivity Modulated by Sub-threshold High-Frequency Repetitive Transcranial Magnetic Stimulation
por: Li, Rihui, et al.
Publicado: (2019) -
Enhancing Performance of a Hybrid EEG-fNIRS System Using Channel Selection and Early Temporal Features
por: Li, Rihui, et al.
Publicado: (2017) -
EEG driving fatigue detection based on log-Mel spectrogram and convolutional recurrent neural networks
por: Gao, Dongrui, et al.
Publicado: (2023) -
Electroencephalogram–Electromyography Coupling Analysis in Stroke Based on Symbolic Transfer Entropy
por: Gao, Yunyuan, et al.
Publicado: (2018)