Cargando…
Hydrogels as delivery systems for spinal cord injury regeneration
Spinal cord injury is extremely debilitating, both at physiological and psychological levels, changing completely the patient's lifestyle. The introduction of biomaterials has opened a new window to develop a therapeutic approach to induce regeneration after injury due to similarities with extr...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7905359/ https://www.ncbi.nlm.nih.gov/pubmed/33665602 http://dx.doi.org/10.1016/j.mtbio.2021.100093 |
_version_ | 1783655097344983040 |
---|---|
author | Silva, D. Sousa, R.A. Salgado, A.J. |
author_facet | Silva, D. Sousa, R.A. Salgado, A.J. |
author_sort | Silva, D. |
collection | PubMed |
description | Spinal cord injury is extremely debilitating, both at physiological and psychological levels, changing completely the patient's lifestyle. The introduction of biomaterials has opened a new window to develop a therapeutic approach to induce regeneration after injury due to similarities with extracellular matrix. Particularly, hydrogels have the ability to support axonal growth and endogenous regeneration. Moreover, they can also act as potential matrixes in which to load and deliver therapeutic agents at injury site. In this review, we highlight some important characteristics to be considered when designing hydrogels as delivery systems (DS), such as rheology, mesh size, swelling, degradation, gelation temperature and surface charge. Additionally, affinity-based release systems, incorporation of nanoparticles, or ion-mediated interactions are also pondered. Overall, hydrogel DS aim to promote a sustained, controlled and prolonged release at injury site, allowing a targeted oriented action of the therapeutic agent that will be used. |
format | Online Article Text |
id | pubmed-7905359 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-79053592021-03-03 Hydrogels as delivery systems for spinal cord injury regeneration Silva, D. Sousa, R.A. Salgado, A.J. Mater Today Bio Review Article Spinal cord injury is extremely debilitating, both at physiological and psychological levels, changing completely the patient's lifestyle. The introduction of biomaterials has opened a new window to develop a therapeutic approach to induce regeneration after injury due to similarities with extracellular matrix. Particularly, hydrogels have the ability to support axonal growth and endogenous regeneration. Moreover, they can also act as potential matrixes in which to load and deliver therapeutic agents at injury site. In this review, we highlight some important characteristics to be considered when designing hydrogels as delivery systems (DS), such as rheology, mesh size, swelling, degradation, gelation temperature and surface charge. Additionally, affinity-based release systems, incorporation of nanoparticles, or ion-mediated interactions are also pondered. Overall, hydrogel DS aim to promote a sustained, controlled and prolonged release at injury site, allowing a targeted oriented action of the therapeutic agent that will be used. Elsevier 2021-01-22 /pmc/articles/PMC7905359/ /pubmed/33665602 http://dx.doi.org/10.1016/j.mtbio.2021.100093 Text en © 2020 The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Article Silva, D. Sousa, R.A. Salgado, A.J. Hydrogels as delivery systems for spinal cord injury regeneration |
title | Hydrogels as delivery systems for spinal cord injury regeneration |
title_full | Hydrogels as delivery systems for spinal cord injury regeneration |
title_fullStr | Hydrogels as delivery systems for spinal cord injury regeneration |
title_full_unstemmed | Hydrogels as delivery systems for spinal cord injury regeneration |
title_short | Hydrogels as delivery systems for spinal cord injury regeneration |
title_sort | hydrogels as delivery systems for spinal cord injury regeneration |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7905359/ https://www.ncbi.nlm.nih.gov/pubmed/33665602 http://dx.doi.org/10.1016/j.mtbio.2021.100093 |
work_keys_str_mv | AT silvad hydrogelsasdeliverysystemsforspinalcordinjuryregeneration AT sousara hydrogelsasdeliverysystemsforspinalcordinjuryregeneration AT salgadoaj hydrogelsasdeliverysystemsforspinalcordinjuryregeneration |