Cargando…
Diagnosis of FOXG1 syndrome caused by recurrent balanced chromosomal rearrangements: case study and literature review
BACKGROUND: The FOXG1 gene plays a vital role in mammalian brain differentiation and development. Intra- and intergenic mutations resulting in loss of function or altered expression of the FOXG1 gene cause FOXG1 syndrome. The hallmarks of this syndrome are severe developmental delay with absent verb...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7905679/ https://www.ncbi.nlm.nih.gov/pubmed/33632291 http://dx.doi.org/10.1186/s13039-020-00506-1 |
Sumario: | BACKGROUND: The FOXG1 gene plays a vital role in mammalian brain differentiation and development. Intra- and intergenic mutations resulting in loss of function or altered expression of the FOXG1 gene cause FOXG1 syndrome. The hallmarks of this syndrome are severe developmental delay with absent verbal language, post-natal growth restriction, post-natal microcephaly, and a recognizable movement disorder characterized by chorea and dystonia. CASE PRESENTATION: Here we describe a case of a 7-year-old male patient found to have a de novo balanced translocation between chromosome 3 at band 3q14.1 and chromosome 14 at band 14q12 via G-banding chromosome and Fluorescence In Situ Hybridization (FISH) analyses. This rearrangement disrupts the proximity of FOXG1 to a previously described smallest region of deletion overlap (SRO), likely resulting in haploinsufficiency. CONCLUSIONS: This case adds to the growing body of literature implicating chromosomal structural variants in the manifestation of this disorder and highlights the vital role of cis-acting regulatory elements in the normal expression of this gene. Finally, we propose a protocol for reflex FISH analysis to improve diagnostic efficiency for patients with suspected FOXG1 syndrome. |
---|