Cargando…
A warning machine learning algorithm for early knee osteoarthritis structural progressor patient screening
AIM: In osteoarthritis (OA) there is a need for automated screening systems for early detection of structural progressors. We built a comprehensive machine learning (ML) model that bridges major OA risk factors and serum levels of adipokines/related inflammatory factors at baseline for early predict...
Autores principales: | Bonakdari, Hossein, Jamshidi, Afshin, Pelletier, Jean-Pierre, Abram, François, Tardif, Ginette, Martel-Pelletier, Johanne |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7905723/ https://www.ncbi.nlm.nih.gov/pubmed/33747150 http://dx.doi.org/10.1177/1759720X21993254 |
Ejemplares similares
-
Identification of the most important features of knee osteoarthritis structural progressors using machine learning methods
por: Jamshidi, Afshin, et al.
Publicado: (2020) -
Serum adipokines/related inflammatory factors and ratios as predictors of infrapatellar fat pad volume in osteoarthritis: Applying comprehensive machine learning approaches
por: Bonakdari, Hossein, et al.
Publicado: (2020) -
Single nucleotide polymorphism genes and mitochondrial DNA haplogroups as biomarkers for early prediction of knee osteoarthritis structural progressors: use of supervised machine learning classifiers
por: Bonakdari, Hossein, et al.
Publicado: (2022) -
A Machine Learning Model to Predict Knee Osteoarthritis Cartilage Volume Changes over Time Using Baseline Bone Curvature
por: Bonakdari, Hossein, et al.
Publicado: (2022) -
Common Biochemical and Magnetic Resonance Imaging Biomarkers of Early Knee Osteoarthritis and of Exercise/Training in Athletes: A Narrative Review
por: Martel-Pelletier, Johanne, et al.
Publicado: (2021)