Cargando…
Clinical feasibility of deep learning-based auto-segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving surgery
BACKGROUND: In breast cancer patients receiving radiotherapy (RT), accurate target delineation and reduction of radiation doses to the nearby normal organs is important. However, manual clinical target volume (CTV) and organs-at-risk (OARs) segmentation for treatment planning increases physicians’ w...
Autores principales: | Chung, Seung Yeun, Chang, Jee Suk, Choi, Min Seo, Chang, Yongjin, Choi, Byong Su, Chun, Jaehee, Keum, Ki Chang, Kim, Jin Sung, Kim, Yong Bae |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7905884/ https://www.ncbi.nlm.nih.gov/pubmed/33632248 http://dx.doi.org/10.1186/s13014-021-01771-z |
Ejemplares similares
-
Feasibility of Continual Deep Learning-Based Segmentation for Personalized Adaptive Radiation Therapy in Head and Neck Area
por: Kim, Nalee, et al.
Publicado: (2021) -
Comprehensive clinical evaluation of deep learning-based auto-segmentation for radiotherapy in patients with cervical cancer
por: Chung, Seung Yeun, et al.
Publicado: (2023) -
Evaluation of deep learning-based autosegmentation in breast cancer radiotherapy
por: Byun, Hwa Kyung, et al.
Publicado: (2021) -
Atlas-based auto-segmentation for postoperative radiotherapy planning in endometrial and cervical cancers
por: Kim, Nalee, et al.
Publicado: (2020) -
Clinical Evaluation of Commercial Atlas-Based Auto-Segmentation in the Head and Neck Region
por: Lee, Hyothaek, et al.
Publicado: (2019)