Cargando…
A hybrid cost-sensitive ensemble for heart disease prediction
BACKGROUND: Heart disease is the primary cause of morbidity and mortality in the world. It includes numerous problems and symptoms. The diagnosis of heart disease is difficult because there are too many factors to analyze. What’s more, the misclassification cost could be very high. METHODS: A cost-s...
Autores principales: | Zhenya, Qi, Zhang, Zuoru |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7905907/ https://www.ncbi.nlm.nih.gov/pubmed/33632225 http://dx.doi.org/10.1186/s12911-021-01436-7 |
Ejemplares similares
-
Breast cancer recurrence prediction with ensemble methods and cost-sensitive learning
por: Yang, Pei-Tse, et al.
Publicado: (2021) -
Ensemble Learning Based on Hybrid Deep Learning Model for Heart Disease Early Prediction
por: Almulihi, Ahmed, et al.
Publicado: (2022) -
Cancer Classification with a Cost-Sensitive Naive Bayes Stacking Ensemble
por: Xiong, Yueling, et al.
Publicado: (2021) -
Conformational B-Cell Epitopes Prediction from Sequences Using Cost-Sensitive Ensemble Classifiers and Spatial Clustering
por: Zhang, Jian, et al.
Publicado: (2014) -
Hybrid Predictive Ensembles: Synergies Between Human and Computational Forecasts
por: Hong, Lu, et al.
Publicado: (2021)