Cargando…

Ionic Liquid-Induced Phase-Separated Domains in Lipid Multilayers Probed by X-ray Scattering Studies

[Image: see text] A cellular membrane, primarily a lipid bilayer, surrounds the internal components of a biological cell from the external components. This self-assembled bilayer is known to be perturbed by ionic liquids (ILs) causing malfunctioning of a cellular organism. In the present study, surf...

Descripción completa

Detalles Bibliográficos
Autores principales: Gupta, Ritika, Singh, Arnab, Srihari, Velaga, Ghosh, Sajal K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7905935/
https://www.ncbi.nlm.nih.gov/pubmed/33644605
http://dx.doi.org/10.1021/acsomega.0c06014
Descripción
Sumario:[Image: see text] A cellular membrane, primarily a lipid bilayer, surrounds the internal components of a biological cell from the external components. This self-assembled bilayer is known to be perturbed by ionic liquids (ILs) causing malfunctioning of a cellular organism. In the present study, surface-sensitive X-ray scattering techniques have been employed to understand this structural perturbation in a lipid multilayer system formed by a zwitterionic phospholipid, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine. The ammonium and phosphonium-based ILs with methanesulfonate anions are observed to induce phase-separated domains in the plane of a bilayer. The lamellar X-ray diffraction peaks suggest these domains to correlate across the bilayers in a smectic liquid crystalline phase. This induced IL-rich lamellar phase has a very low lamellar repeat distance, suggesting the formation of an interdigitated bilayer. The IL-poor phase closely related to the pristine lipid phase shows a decrement in the in-plane chain lattice parameters with a reduced tilt angle. The ammonium and phosphonium-based ILs with a relatively bulky anion, p-toluenemethanesulfonate, have shown a similar effect.