Cargando…

Perovskite Solar Cells toward Eco-Friendly Printing

Eco-friendly printing is important for mass manufacturing of thin-film photovoltaic (PV) devices to preserve human safety and the environment and to reduce energy consumption and capital expense. However, it is challenging for perovskite PVs due to the lack of eco-friendly solvents for ambient fast...

Descripción completa

Detalles Bibliográficos
Autores principales: Chang, Xiaoming, Fan, Yuanyuan, Zhao, Kui, Fang, Junjie, Liu, Dongle, Tang, Ming-Chun, Barrit, Dounya, Smilgies, Detlef-M., Li, Ruipeng, Lu, Jing, Li, Jianbo, Yang, Tinghuan, Amassian, Aram, Ding, Zicheng, Chen, Yonghua, Liu, Shengzhong (Frank), Huang, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AAAS 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7906024/
https://www.ncbi.nlm.nih.gov/pubmed/33681813
http://dx.doi.org/10.34133/2021/9671892
Descripción
Sumario:Eco-friendly printing is important for mass manufacturing of thin-film photovoltaic (PV) devices to preserve human safety and the environment and to reduce energy consumption and capital expense. However, it is challenging for perovskite PVs due to the lack of eco-friendly solvents for ambient fast printing. In this study, we demonstrate for the first time an eco-friendly printing concept for high-performance perovskite solar cells. Both the perovskite and charge transport layers were fabricated from eco-friendly solvents via scalable fast blade coating under ambient conditions. The perovskite dynamic crystallization during blade coating investigated using in situ grazing incidence wide-angle X-ray scattering (GIWAXS) reveals a long sol-gel window prior to phase transformation and a strong interaction between the precursors and the eco-friendly solvents. The insights enable the achievement of high quality coatings for both the perovskite and charge transport layers by controlling film formation during scalable coating. The excellent optoelectronic properties of these coatings translate to a power conversion efficiency of 18.26% for eco-friendly printed solar cells, which is on par with the conventional devices fabricated via spin coating from toxic solvents under inert atmosphere. The eco-friendly printing paradigm presented in this work paves the way for future green and high-throughput fabrication on an industrial scale for perovskite PVs.