Cargando…

An extended state observer based U-model control of the COVID-19()

The coronavirus disease 2019 (COVID-19) is a new, rapidly spreading and evolving pandemic around the world. The COVID-19 has seriously affected people’s health or even threaten people’s life. In order to contain the spread of the pandemic and minimize its impact on economy, the tried-and-true contro...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Wei, Duan, Bowen, Zuo, Min, Zhu, Quanmin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: ISA. Published by Elsevier Ltd. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7906037/
https://www.ncbi.nlm.nih.gov/pubmed/33674066
http://dx.doi.org/10.1016/j.isatra.2021.02.039
Descripción
Sumario:The coronavirus disease 2019 (COVID-19) is a new, rapidly spreading and evolving pandemic around the world. The COVID-19 has seriously affected people’s health or even threaten people’s life. In order to contain the spread of the pandemic and minimize its impact on economy, the tried-and-true control theory is utilized. Firstly, the control problem is clarified. Then, by combining advantages of the U-model control and the extended state observer (ESO), an extended state observer-based U-model control (ESOUC) is proposed to generate a population restriction policy. Closed-loop stability of the regulation system is also proved Two examples are considered, and numerical simulation results show that the ESOUC can suppress the COVID-19 faster than the linear active disturbance rejection control, which benefits controlling the infectious disease and the economic recovery. The ESOUC may provide a feasible non-pharmaceutical intervention in the control of the COVID-19.