Cargando…

Cell lineage-specific methylome and genome alterations in gout

In this study, we examined data from 69 gout patients and 1,455 non-gout controls using a MethylationEPIC BeadChip assay and Illumina HiSeq platform to identify lineage-specific epigenetic alterations and associated genetic factors that contributed to gouty inflammation. Cell lineage-specific differ...

Descripción completa

Detalles Bibliográficos
Autores principales: Tseng, Chia-Chun, Liao, Wei-Ting, Wong, Man-Chun, Chen, Chung-Jen, Lee, Su-Chen, Yen, Jeng-Hsien, Chang, Shun-Jen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7906142/
https://www.ncbi.nlm.nih.gov/pubmed/33493135
http://dx.doi.org/10.18632/aging.202353
Descripción
Sumario:In this study, we examined data from 69 gout patients and 1,455 non-gout controls using a MethylationEPIC BeadChip assay and Illumina HiSeq platform to identify lineage-specific epigenetic alterations and associated genetic factors that contributed to gouty inflammation. Cell lineage-specific differentially methylated sites were identified using CellDMC after adjusting for sex, age, alcohol drinking, smoking status, and smoking history (total pack-years). Different cell lineages displayed distinct differential methylation. Ingenuity Pathway Analysis and NetworkAnalyst indicated that many differential methylated sites were associated with interleukin-1β expression in monocytes. On the UCSC Genome Browser and WashU Epigenome Browser, metabolic trait, cis-methylation quantitative trait loci, genetic, and functional annotation analyses identified nine methylation loci located in interleukin-1β-regulating genes (PRKCZ, CIDEC, VDAC1, CPT1A, BIRC2, BRCA1, STK11, and NLRP12) that were associated specifically with gouty inflammation. All nine sites mapped to active regulatory elements in monocytes. MoLoTool and ReMap analyses indicated that the nine methylation loci overlapped with binding sites of several transcription factors that regulated interleukin-1β production and gouty inflammation. Decreases in PRKCZ and STK11 methylation were also associated with higher numbers of first-degree relatives who also had gout. The gouty-inflammation specific methylome and genome alterations could potentially aid in the identification of novel therapeutic targets.