Cargando…

SphK1-targeted miR-6784 inhibits functions of skin squamous cell carcinoma cells

Sphingosine kinase 1 (SphK1) is overexpressed in skin squamous cell carcinoma (SCC). It has emerged as a novel therapeutic oncotarget. The current study identified a novel SphK1-targeting microRNA, microRNA-6784 (miR-6784). Here, we show that miR-6784 is located at the cytoplasm of A431 skin SCC cel...

Descripción completa

Detalles Bibliográficos
Autores principales: Gong, Zhen-Hua, Ji, Jiang, Yao, Jian, Ji, Jian-Feng, Jiang, Yasu, Gao, Gang, Feng, Zhou
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7906188/
https://www.ncbi.nlm.nih.gov/pubmed/33465049
http://dx.doi.org/10.18632/aging.202336
Descripción
Sumario:Sphingosine kinase 1 (SphK1) is overexpressed in skin squamous cell carcinoma (SCC). It has emerged as a novel therapeutic oncotarget. The current study identified a novel SphK1-targeting microRNA, microRNA-6784 (miR-6784). Here, we show that miR-6784 is located at the cytoplasm of A431 skin SCC cells. It directly binds to SphK1 mRNA. Ectopic overexpression of miR-6784 inhibited SphK1 3’-untranslated region (UTR) luciferase activity and downregulated its expression. Moreover, miR-6784 overexpression caused ceramide accumulation in skin SCC cells. Functional studies in established (A431 and SCC9) and primary skin SCC cells revealed that miR-6784 overexpression inhibited cell viability, proliferation, migration, and invasion. It also simultaneously provoked apoptosis activation. Conversely, miR-6784 silencing by antagomiR-6784 induced SphK1 elevation and augmented A431 cell proliferation, migration, and invasion. miR-6784 overexpression-induced anti-A431 cell activity was inhibited by the expression of an UTR-null SphK1 construct. CRISPR/Cas9-induced SphK1 knockout inhibited A431 cell growth. Importantly, miR-6784 was completely ineffective when treating SphK1-knockout A431 cells. Collectively, miR-6784 silences SphK1 and inhibits skin SCC cell progression.