Cargando…
Reduced SULT2B1b expression alleviates ox-LDL-induced inflammation by upregulating miR-148-3P via inhibiting the IKKβ/NF-κB pathway in macrophages
Atherosclerosis is a lipid-driven chronic inflammatory disease in which lipid-laden macrophage foam cells lead to inflamed lesions in arteries. Previous studies have proven that sulfotransferase 2B1b (SULT2B1b) has several roles in the regulation of lipid metabolism and the inflammatory response. Ho...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7906218/ https://www.ncbi.nlm.nih.gov/pubmed/33428590 http://dx.doi.org/10.18632/aging.202273 |
_version_ | 1783655250840780800 |
---|---|
author | Yin, Mengzhuo Lu, Jianwen Guo, Zhongzhou Zhang, Yanan Liu, Jichen Wu, Tongwei Guo, Kai Luo, Tiantian Guo, Zhigang |
author_facet | Yin, Mengzhuo Lu, Jianwen Guo, Zhongzhou Zhang, Yanan Liu, Jichen Wu, Tongwei Guo, Kai Luo, Tiantian Guo, Zhigang |
author_sort | Yin, Mengzhuo |
collection | PubMed |
description | Atherosclerosis is a lipid-driven chronic inflammatory disease in which lipid-laden macrophage foam cells lead to inflamed lesions in arteries. Previous studies have proven that sulfotransferase 2B1b (SULT2B1b) has several roles in the regulation of lipid metabolism and the inflammatory response. However, little is known about the functions of SULT2B1b in ox-LDL-induced inflammation in macrophages. In this study, after treatment with either ox-LDL alone or combined with transfection of siRNAs targeting SULT2B1b, IL-6, TNF-α, NF-κB, IKKβ and IκB mRNA and protein expression were determined in Raw264.7 cells by real-time PCR and Western blot, respectively. The proliferative capacity was determined by EdU staining and Cell Counting Kit-8. Our data demonstrated that SULT2B1b knockdown could reduce phosphorylated NF-κB levels and downregulate IKKβ protein levels. Additionally, IκB levels were increased and the proliferation of ox-LDL stimulated cells was inhibited after SULT2B1b silencing. Downregulation of SULT2B1b expression was found to upregulate miR-148a-3p expression by microarray assay, while IKKβ was a miR-148a-3p target gene. Our study suggests that SULT2B1b knockdown could promote miR148a-3p expression and inhibit activation of the IKKβ/NF-κB signalling pathway, which suppressed the inflammatory response in macrophages. Therefore, targeting the SULT2B1b gene might be potentially beneficial for atherosclerosis prevention by decreasing the inflammatory response. |
format | Online Article Text |
id | pubmed-7906218 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Impact Journals |
record_format | MEDLINE/PubMed |
spelling | pubmed-79062182021-03-04 Reduced SULT2B1b expression alleviates ox-LDL-induced inflammation by upregulating miR-148-3P via inhibiting the IKKβ/NF-κB pathway in macrophages Yin, Mengzhuo Lu, Jianwen Guo, Zhongzhou Zhang, Yanan Liu, Jichen Wu, Tongwei Guo, Kai Luo, Tiantian Guo, Zhigang Aging (Albany NY) Research Paper Atherosclerosis is a lipid-driven chronic inflammatory disease in which lipid-laden macrophage foam cells lead to inflamed lesions in arteries. Previous studies have proven that sulfotransferase 2B1b (SULT2B1b) has several roles in the regulation of lipid metabolism and the inflammatory response. However, little is known about the functions of SULT2B1b in ox-LDL-induced inflammation in macrophages. In this study, after treatment with either ox-LDL alone or combined with transfection of siRNAs targeting SULT2B1b, IL-6, TNF-α, NF-κB, IKKβ and IκB mRNA and protein expression were determined in Raw264.7 cells by real-time PCR and Western blot, respectively. The proliferative capacity was determined by EdU staining and Cell Counting Kit-8. Our data demonstrated that SULT2B1b knockdown could reduce phosphorylated NF-κB levels and downregulate IKKβ protein levels. Additionally, IκB levels were increased and the proliferation of ox-LDL stimulated cells was inhibited after SULT2B1b silencing. Downregulation of SULT2B1b expression was found to upregulate miR-148a-3p expression by microarray assay, while IKKβ was a miR-148a-3p target gene. Our study suggests that SULT2B1b knockdown could promote miR148a-3p expression and inhibit activation of the IKKβ/NF-κB signalling pathway, which suppressed the inflammatory response in macrophages. Therefore, targeting the SULT2B1b gene might be potentially beneficial for atherosclerosis prevention by decreasing the inflammatory response. Impact Journals 2021-01-10 /pmc/articles/PMC7906218/ /pubmed/33428590 http://dx.doi.org/10.18632/aging.202273 Text en Copyright: © 2021 Yin et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/3.0/) (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Yin, Mengzhuo Lu, Jianwen Guo, Zhongzhou Zhang, Yanan Liu, Jichen Wu, Tongwei Guo, Kai Luo, Tiantian Guo, Zhigang Reduced SULT2B1b expression alleviates ox-LDL-induced inflammation by upregulating miR-148-3P via inhibiting the IKKβ/NF-κB pathway in macrophages |
title | Reduced SULT2B1b expression alleviates ox-LDL-induced inflammation by upregulating miR-148-3P via inhibiting the IKKβ/NF-κB pathway in macrophages |
title_full | Reduced SULT2B1b expression alleviates ox-LDL-induced inflammation by upregulating miR-148-3P via inhibiting the IKKβ/NF-κB pathway in macrophages |
title_fullStr | Reduced SULT2B1b expression alleviates ox-LDL-induced inflammation by upregulating miR-148-3P via inhibiting the IKKβ/NF-κB pathway in macrophages |
title_full_unstemmed | Reduced SULT2B1b expression alleviates ox-LDL-induced inflammation by upregulating miR-148-3P via inhibiting the IKKβ/NF-κB pathway in macrophages |
title_short | Reduced SULT2B1b expression alleviates ox-LDL-induced inflammation by upregulating miR-148-3P via inhibiting the IKKβ/NF-κB pathway in macrophages |
title_sort | reduced sult2b1b expression alleviates ox-ldl-induced inflammation by upregulating mir-148-3p via inhibiting the ikkβ/nf-κb pathway in macrophages |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7906218/ https://www.ncbi.nlm.nih.gov/pubmed/33428590 http://dx.doi.org/10.18632/aging.202273 |
work_keys_str_mv | AT yinmengzhuo reducedsult2b1bexpressionalleviatesoxldlinducedinflammationbyupregulatingmir1483pviainhibitingtheikkbnfkbpathwayinmacrophages AT lujianwen reducedsult2b1bexpressionalleviatesoxldlinducedinflammationbyupregulatingmir1483pviainhibitingtheikkbnfkbpathwayinmacrophages AT guozhongzhou reducedsult2b1bexpressionalleviatesoxldlinducedinflammationbyupregulatingmir1483pviainhibitingtheikkbnfkbpathwayinmacrophages AT zhangyanan reducedsult2b1bexpressionalleviatesoxldlinducedinflammationbyupregulatingmir1483pviainhibitingtheikkbnfkbpathwayinmacrophages AT liujichen reducedsult2b1bexpressionalleviatesoxldlinducedinflammationbyupregulatingmir1483pviainhibitingtheikkbnfkbpathwayinmacrophages AT wutongwei reducedsult2b1bexpressionalleviatesoxldlinducedinflammationbyupregulatingmir1483pviainhibitingtheikkbnfkbpathwayinmacrophages AT guokai reducedsult2b1bexpressionalleviatesoxldlinducedinflammationbyupregulatingmir1483pviainhibitingtheikkbnfkbpathwayinmacrophages AT luotiantian reducedsult2b1bexpressionalleviatesoxldlinducedinflammationbyupregulatingmir1483pviainhibitingtheikkbnfkbpathwayinmacrophages AT guozhigang reducedsult2b1bexpressionalleviatesoxldlinducedinflammationbyupregulatingmir1483pviainhibitingtheikkbnfkbpathwayinmacrophages |