Cargando…

Registration of spatio-temporal point clouds of plants for phenotyping

Plant phenotyping is a central task in crop science and plant breeding. It involves measuring plant traits to describe the anatomy and physiology of plants and is used for deriving traits and evaluating plant performance. Traditional methods for phenotyping are often time-consuming operations involv...

Descripción completa

Detalles Bibliográficos
Autores principales: Chebrolu, Nived, Magistri, Federico, Läbe, Thomas, Stachniss, Cyrill
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7906482/
https://www.ncbi.nlm.nih.gov/pubmed/33630896
http://dx.doi.org/10.1371/journal.pone.0247243
_version_ 1783655298075983872
author Chebrolu, Nived
Magistri, Federico
Läbe, Thomas
Stachniss, Cyrill
author_facet Chebrolu, Nived
Magistri, Federico
Läbe, Thomas
Stachniss, Cyrill
author_sort Chebrolu, Nived
collection PubMed
description Plant phenotyping is a central task in crop science and plant breeding. It involves measuring plant traits to describe the anatomy and physiology of plants and is used for deriving traits and evaluating plant performance. Traditional methods for phenotyping are often time-consuming operations involving substantial manual labor. The availability of 3D sensor data of plants obtained from laser scanners or modern depth cameras offers the potential to automate several of these phenotyping tasks. This automation can scale up the phenotyping measurements and evaluations that have to be performed to a larger number of plant samples and at a finer spatial and temporal resolution. In this paper, we investigate the problem of registering 3D point clouds of the plants over time and space. This means that we determine correspondences between point clouds of plants taken at different points in time and register them using a new, non-rigid registration approach. This approach has the potential to form the backbone for phenotyping applications aimed at tracking the traits of plants over time. The registration task involves finding data associations between measurements taken at different times while the plants grow and change their appearance, allowing 3D models taken at different points in time to be compared with each other. Registering plants over time is challenging due to its anisotropic growth, changing topology, and non-rigid motion in between the time of the measurements. Thus, we propose a novel approach that first extracts a compact representation of the plant in the form of a skeleton that encodes both topology and semantic information, and then use this skeletal structure to determine correspondences over time and drive the registration process. Through this approach, we can tackle the data association problem for the time-series point cloud data of plants effectively. We tested our approach on different datasets acquired over time and successfully registered the 3D plant point clouds recorded with a laser scanner. We demonstrate that our method allows for developing systems for automated temporal plant-trait analysis by tracking plant traits at an organ level.
format Online
Article
Text
id pubmed-7906482
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-79064822021-03-03 Registration of spatio-temporal point clouds of plants for phenotyping Chebrolu, Nived Magistri, Federico Läbe, Thomas Stachniss, Cyrill PLoS One Research Article Plant phenotyping is a central task in crop science and plant breeding. It involves measuring plant traits to describe the anatomy and physiology of plants and is used for deriving traits and evaluating plant performance. Traditional methods for phenotyping are often time-consuming operations involving substantial manual labor. The availability of 3D sensor data of plants obtained from laser scanners or modern depth cameras offers the potential to automate several of these phenotyping tasks. This automation can scale up the phenotyping measurements and evaluations that have to be performed to a larger number of plant samples and at a finer spatial and temporal resolution. In this paper, we investigate the problem of registering 3D point clouds of the plants over time and space. This means that we determine correspondences between point clouds of plants taken at different points in time and register them using a new, non-rigid registration approach. This approach has the potential to form the backbone for phenotyping applications aimed at tracking the traits of plants over time. The registration task involves finding data associations between measurements taken at different times while the plants grow and change their appearance, allowing 3D models taken at different points in time to be compared with each other. Registering plants over time is challenging due to its anisotropic growth, changing topology, and non-rigid motion in between the time of the measurements. Thus, we propose a novel approach that first extracts a compact representation of the plant in the form of a skeleton that encodes both topology and semantic information, and then use this skeletal structure to determine correspondences over time and drive the registration process. Through this approach, we can tackle the data association problem for the time-series point cloud data of plants effectively. We tested our approach on different datasets acquired over time and successfully registered the 3D plant point clouds recorded with a laser scanner. We demonstrate that our method allows for developing systems for automated temporal plant-trait analysis by tracking plant traits at an organ level. Public Library of Science 2021-02-25 /pmc/articles/PMC7906482/ /pubmed/33630896 http://dx.doi.org/10.1371/journal.pone.0247243 Text en © 2021 Chebrolu et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Chebrolu, Nived
Magistri, Federico
Läbe, Thomas
Stachniss, Cyrill
Registration of spatio-temporal point clouds of plants for phenotyping
title Registration of spatio-temporal point clouds of plants for phenotyping
title_full Registration of spatio-temporal point clouds of plants for phenotyping
title_fullStr Registration of spatio-temporal point clouds of plants for phenotyping
title_full_unstemmed Registration of spatio-temporal point clouds of plants for phenotyping
title_short Registration of spatio-temporal point clouds of plants for phenotyping
title_sort registration of spatio-temporal point clouds of plants for phenotyping
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7906482/
https://www.ncbi.nlm.nih.gov/pubmed/33630896
http://dx.doi.org/10.1371/journal.pone.0247243
work_keys_str_mv AT chebrolunived registrationofspatiotemporalpointcloudsofplantsforphenotyping
AT magistrifederico registrationofspatiotemporalpointcloudsofplantsforphenotyping
AT labethomas registrationofspatiotemporalpointcloudsofplantsforphenotyping
AT stachnisscyrill registrationofspatiotemporalpointcloudsofplantsforphenotyping