Cargando…
N-BiC: A method for multi-component and symptom biclustering of structural MRI data: Application to schizophrenia
OBJECTIVE: We propose and develop a novel biclustering (N-BiC) approach for performing N-way biclustering of neuroimaging data. Our approach is applicable to an arbitrary number of features from both imaging and behavioral data (e.g., symptoms). We applied it to structural MRI data from patients wit...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7906485/ https://www.ncbi.nlm.nih.gov/pubmed/30946659 http://dx.doi.org/10.1109/TBME.2019.2908815 |
_version_ | 1783655298301427712 |
---|---|
author | Rahaman, Md Abdur Turner, Jessica A. Gupta, Cota Navin Rachakonda, Srinivas Chen, Jiayu Liu, Jingyu van Erp, Theo G. M. Potkin, Steven Ford, Judith Mathalon, Daniel Lee, Hyo Jong Jiang, Wenhao Mueller, Bryon A. Andreassen, Ole Agartz, Ingrid Sponheim, Scott R. Mayer, Andrew R. Stephen, Julia Jung, Rex E. Canive, Jose Bustillo, Juan Calhoun, Vince D. |
author_facet | Rahaman, Md Abdur Turner, Jessica A. Gupta, Cota Navin Rachakonda, Srinivas Chen, Jiayu Liu, Jingyu van Erp, Theo G. M. Potkin, Steven Ford, Judith Mathalon, Daniel Lee, Hyo Jong Jiang, Wenhao Mueller, Bryon A. Andreassen, Ole Agartz, Ingrid Sponheim, Scott R. Mayer, Andrew R. Stephen, Julia Jung, Rex E. Canive, Jose Bustillo, Juan Calhoun, Vince D. |
author_sort | Rahaman, Md Abdur |
collection | PubMed |
description | OBJECTIVE: We propose and develop a novel biclustering (N-BiC) approach for performing N-way biclustering of neuroimaging data. Our approach is applicable to an arbitrary number of features from both imaging and behavioral data (e.g., symptoms). We applied it to structural MRI data from patients with schizophrenia. METHODS: It uses a source-based morphometry approach (i.e., independent component analysis (ICA) of gray matter segmentation maps) to decompose the data into a set of spatial maps, each of which includes regions that covary among individuals. Then the loading parameters for components of interest are entered to an exhaustive search, which incorporates a modified depth-first search (DFS) technique to carry out the biclustering, with the goal of obtaining submatrices where the selected rows (individuals) show homogeneity in their expressions of selected columns (components) and vice versa. RESULTS: Findings demonstrate multiple biclusters have an evident association with distinct brain networks for the different types of symptoms in schizophrenia. The study identifies two components: inferior temporal gyrus (16) and brainstem (7), which are related to positive (distortion/excess of normal function) and negative (diminution/loss of normal function) symptoms in schizophrenia respectively. CONCLUSION: N-BiC is a data-driven method of biclustering MRI data that can exhaustively explore relationships/substructures from a dataset without any prior information with a higher degree of robustness than earlier biclustering applications. SIGNIFICANCE: The use of such approaches is important to investigate the underlying biological substrates of mental illness by grouping patients into homogeneous subjects as the schizophrenia diagnosis is known to be relatively nonspecific and heterogeneous. |
format | Online Article Text |
id | pubmed-7906485 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
record_format | MEDLINE/PubMed |
spelling | pubmed-79064852021-02-25 N-BiC: A method for multi-component and symptom biclustering of structural MRI data: Application to schizophrenia Rahaman, Md Abdur Turner, Jessica A. Gupta, Cota Navin Rachakonda, Srinivas Chen, Jiayu Liu, Jingyu van Erp, Theo G. M. Potkin, Steven Ford, Judith Mathalon, Daniel Lee, Hyo Jong Jiang, Wenhao Mueller, Bryon A. Andreassen, Ole Agartz, Ingrid Sponheim, Scott R. Mayer, Andrew R. Stephen, Julia Jung, Rex E. Canive, Jose Bustillo, Juan Calhoun, Vince D. IEEE Trans Biomed Eng Article OBJECTIVE: We propose and develop a novel biclustering (N-BiC) approach for performing N-way biclustering of neuroimaging data. Our approach is applicable to an arbitrary number of features from both imaging and behavioral data (e.g., symptoms). We applied it to structural MRI data from patients with schizophrenia. METHODS: It uses a source-based morphometry approach (i.e., independent component analysis (ICA) of gray matter segmentation maps) to decompose the data into a set of spatial maps, each of which includes regions that covary among individuals. Then the loading parameters for components of interest are entered to an exhaustive search, which incorporates a modified depth-first search (DFS) technique to carry out the biclustering, with the goal of obtaining submatrices where the selected rows (individuals) show homogeneity in their expressions of selected columns (components) and vice versa. RESULTS: Findings demonstrate multiple biclusters have an evident association with distinct brain networks for the different types of symptoms in schizophrenia. The study identifies two components: inferior temporal gyrus (16) and brainstem (7), which are related to positive (distortion/excess of normal function) and negative (diminution/loss of normal function) symptoms in schizophrenia respectively. CONCLUSION: N-BiC is a data-driven method of biclustering MRI data that can exhaustively explore relationships/substructures from a dataset without any prior information with a higher degree of robustness than earlier biclustering applications. SIGNIFICANCE: The use of such approaches is important to investigate the underlying biological substrates of mental illness by grouping patients into homogeneous subjects as the schizophrenia diagnosis is known to be relatively nonspecific and heterogeneous. 2019-04-01 2020-01 /pmc/articles/PMC7906485/ /pubmed/30946659 http://dx.doi.org/10.1109/TBME.2019.2908815 Text en http://creativecommons.org/licenses/by/4.0/ “Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.“ |
spellingShingle | Article Rahaman, Md Abdur Turner, Jessica A. Gupta, Cota Navin Rachakonda, Srinivas Chen, Jiayu Liu, Jingyu van Erp, Theo G. M. Potkin, Steven Ford, Judith Mathalon, Daniel Lee, Hyo Jong Jiang, Wenhao Mueller, Bryon A. Andreassen, Ole Agartz, Ingrid Sponheim, Scott R. Mayer, Andrew R. Stephen, Julia Jung, Rex E. Canive, Jose Bustillo, Juan Calhoun, Vince D. N-BiC: A method for multi-component and symptom biclustering of structural MRI data: Application to schizophrenia |
title | N-BiC: A method for multi-component and symptom biclustering of structural MRI data: Application to schizophrenia |
title_full | N-BiC: A method for multi-component and symptom biclustering of structural MRI data: Application to schizophrenia |
title_fullStr | N-BiC: A method for multi-component and symptom biclustering of structural MRI data: Application to schizophrenia |
title_full_unstemmed | N-BiC: A method for multi-component and symptom biclustering of structural MRI data: Application to schizophrenia |
title_short | N-BiC: A method for multi-component and symptom biclustering of structural MRI data: Application to schizophrenia |
title_sort | n-bic: a method for multi-component and symptom biclustering of structural mri data: application to schizophrenia |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7906485/ https://www.ncbi.nlm.nih.gov/pubmed/30946659 http://dx.doi.org/10.1109/TBME.2019.2908815 |
work_keys_str_mv | AT rahamanmdabdur nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia AT turnerjessicaa nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia AT guptacotanavin nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia AT rachakondasrinivas nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia AT chenjiayu nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia AT liujingyu nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia AT vanerptheogm nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia AT potkinsteven nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia AT fordjudith nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia AT mathalondaniel nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia AT leehyojong nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia AT jiangwenhao nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia AT muellerbryona nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia AT andreassenole nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia AT agartzingrid nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia AT sponheimscottr nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia AT mayerandrewr nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia AT stephenjulia nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia AT jungrexe nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia AT canivejose nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia AT bustillojuan nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia AT calhounvinced nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia |