Cargando…

N-BiC: A method for multi-component and symptom biclustering of structural MRI data: Application to schizophrenia

OBJECTIVE: We propose and develop a novel biclustering (N-BiC) approach for performing N-way biclustering of neuroimaging data. Our approach is applicable to an arbitrary number of features from both imaging and behavioral data (e.g., symptoms). We applied it to structural MRI data from patients wit...

Descripción completa

Detalles Bibliográficos
Autores principales: Rahaman, Md Abdur, Turner, Jessica A., Gupta, Cota Navin, Rachakonda, Srinivas, Chen, Jiayu, Liu, Jingyu, van Erp, Theo G. M., Potkin, Steven, Ford, Judith, Mathalon, Daniel, Lee, Hyo Jong, Jiang, Wenhao, Mueller, Bryon A., Andreassen, Ole, Agartz, Ingrid, Sponheim, Scott R., Mayer, Andrew R., Stephen, Julia, Jung, Rex E., Canive, Jose, Bustillo, Juan, Calhoun, Vince D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7906485/
https://www.ncbi.nlm.nih.gov/pubmed/30946659
http://dx.doi.org/10.1109/TBME.2019.2908815
_version_ 1783655298301427712
author Rahaman, Md Abdur
Turner, Jessica A.
Gupta, Cota Navin
Rachakonda, Srinivas
Chen, Jiayu
Liu, Jingyu
van Erp, Theo G. M.
Potkin, Steven
Ford, Judith
Mathalon, Daniel
Lee, Hyo Jong
Jiang, Wenhao
Mueller, Bryon A.
Andreassen, Ole
Agartz, Ingrid
Sponheim, Scott R.
Mayer, Andrew R.
Stephen, Julia
Jung, Rex E.
Canive, Jose
Bustillo, Juan
Calhoun, Vince D.
author_facet Rahaman, Md Abdur
Turner, Jessica A.
Gupta, Cota Navin
Rachakonda, Srinivas
Chen, Jiayu
Liu, Jingyu
van Erp, Theo G. M.
Potkin, Steven
Ford, Judith
Mathalon, Daniel
Lee, Hyo Jong
Jiang, Wenhao
Mueller, Bryon A.
Andreassen, Ole
Agartz, Ingrid
Sponheim, Scott R.
Mayer, Andrew R.
Stephen, Julia
Jung, Rex E.
Canive, Jose
Bustillo, Juan
Calhoun, Vince D.
author_sort Rahaman, Md Abdur
collection PubMed
description OBJECTIVE: We propose and develop a novel biclustering (N-BiC) approach for performing N-way biclustering of neuroimaging data. Our approach is applicable to an arbitrary number of features from both imaging and behavioral data (e.g., symptoms). We applied it to structural MRI data from patients with schizophrenia. METHODS: It uses a source-based morphometry approach (i.e., independent component analysis (ICA) of gray matter segmentation maps) to decompose the data into a set of spatial maps, each of which includes regions that covary among individuals. Then the loading parameters for components of interest are entered to an exhaustive search, which incorporates a modified depth-first search (DFS) technique to carry out the biclustering, with the goal of obtaining submatrices where the selected rows (individuals) show homogeneity in their expressions of selected columns (components) and vice versa. RESULTS: Findings demonstrate multiple biclusters have an evident association with distinct brain networks for the different types of symptoms in schizophrenia. The study identifies two components: inferior temporal gyrus (16) and brainstem (7), which are related to positive (distortion/excess of normal function) and negative (diminution/loss of normal function) symptoms in schizophrenia respectively. CONCLUSION: N-BiC is a data-driven method of biclustering MRI data that can exhaustively explore relationships/substructures from a dataset without any prior information with a higher degree of robustness than earlier biclustering applications. SIGNIFICANCE: The use of such approaches is important to investigate the underlying biological substrates of mental illness by grouping patients into homogeneous subjects as the schizophrenia diagnosis is known to be relatively nonspecific and heterogeneous.
format Online
Article
Text
id pubmed-7906485
institution National Center for Biotechnology Information
language English
publishDate 2019
record_format MEDLINE/PubMed
spelling pubmed-79064852021-02-25 N-BiC: A method for multi-component and symptom biclustering of structural MRI data: Application to schizophrenia Rahaman, Md Abdur Turner, Jessica A. Gupta, Cota Navin Rachakonda, Srinivas Chen, Jiayu Liu, Jingyu van Erp, Theo G. M. Potkin, Steven Ford, Judith Mathalon, Daniel Lee, Hyo Jong Jiang, Wenhao Mueller, Bryon A. Andreassen, Ole Agartz, Ingrid Sponheim, Scott R. Mayer, Andrew R. Stephen, Julia Jung, Rex E. Canive, Jose Bustillo, Juan Calhoun, Vince D. IEEE Trans Biomed Eng Article OBJECTIVE: We propose and develop a novel biclustering (N-BiC) approach for performing N-way biclustering of neuroimaging data. Our approach is applicable to an arbitrary number of features from both imaging and behavioral data (e.g., symptoms). We applied it to structural MRI data from patients with schizophrenia. METHODS: It uses a source-based morphometry approach (i.e., independent component analysis (ICA) of gray matter segmentation maps) to decompose the data into a set of spatial maps, each of which includes regions that covary among individuals. Then the loading parameters for components of interest are entered to an exhaustive search, which incorporates a modified depth-first search (DFS) technique to carry out the biclustering, with the goal of obtaining submatrices where the selected rows (individuals) show homogeneity in their expressions of selected columns (components) and vice versa. RESULTS: Findings demonstrate multiple biclusters have an evident association with distinct brain networks for the different types of symptoms in schizophrenia. The study identifies two components: inferior temporal gyrus (16) and brainstem (7), which are related to positive (distortion/excess of normal function) and negative (diminution/loss of normal function) symptoms in schizophrenia respectively. CONCLUSION: N-BiC is a data-driven method of biclustering MRI data that can exhaustively explore relationships/substructures from a dataset without any prior information with a higher degree of robustness than earlier biclustering applications. SIGNIFICANCE: The use of such approaches is important to investigate the underlying biological substrates of mental illness by grouping patients into homogeneous subjects as the schizophrenia diagnosis is known to be relatively nonspecific and heterogeneous. 2019-04-01 2020-01 /pmc/articles/PMC7906485/ /pubmed/30946659 http://dx.doi.org/10.1109/TBME.2019.2908815 Text en http://creativecommons.org/licenses/by/4.0/ “Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.“
spellingShingle Article
Rahaman, Md Abdur
Turner, Jessica A.
Gupta, Cota Navin
Rachakonda, Srinivas
Chen, Jiayu
Liu, Jingyu
van Erp, Theo G. M.
Potkin, Steven
Ford, Judith
Mathalon, Daniel
Lee, Hyo Jong
Jiang, Wenhao
Mueller, Bryon A.
Andreassen, Ole
Agartz, Ingrid
Sponheim, Scott R.
Mayer, Andrew R.
Stephen, Julia
Jung, Rex E.
Canive, Jose
Bustillo, Juan
Calhoun, Vince D.
N-BiC: A method for multi-component and symptom biclustering of structural MRI data: Application to schizophrenia
title N-BiC: A method for multi-component and symptom biclustering of structural MRI data: Application to schizophrenia
title_full N-BiC: A method for multi-component and symptom biclustering of structural MRI data: Application to schizophrenia
title_fullStr N-BiC: A method for multi-component and symptom biclustering of structural MRI data: Application to schizophrenia
title_full_unstemmed N-BiC: A method for multi-component and symptom biclustering of structural MRI data: Application to schizophrenia
title_short N-BiC: A method for multi-component and symptom biclustering of structural MRI data: Application to schizophrenia
title_sort n-bic: a method for multi-component and symptom biclustering of structural mri data: application to schizophrenia
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7906485/
https://www.ncbi.nlm.nih.gov/pubmed/30946659
http://dx.doi.org/10.1109/TBME.2019.2908815
work_keys_str_mv AT rahamanmdabdur nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia
AT turnerjessicaa nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia
AT guptacotanavin nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia
AT rachakondasrinivas nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia
AT chenjiayu nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia
AT liujingyu nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia
AT vanerptheogm nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia
AT potkinsteven nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia
AT fordjudith nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia
AT mathalondaniel nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia
AT leehyojong nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia
AT jiangwenhao nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia
AT muellerbryona nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia
AT andreassenole nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia
AT agartzingrid nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia
AT sponheimscottr nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia
AT mayerandrewr nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia
AT stephenjulia nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia
AT jungrexe nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia
AT canivejose nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia
AT bustillojuan nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia
AT calhounvinced nbicamethodformulticomponentandsymptombiclusteringofstructuralmridataapplicationtoschizophrenia